/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 290 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 1 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0) timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0) -> 0 if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(zero) -> zero encArg(s(x_1)) -> s(encArg(x_1)) encArg(odd) -> odd encArg(even) -> even encArg(cons_check(x_1)) -> check(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_timesIter(x_1, x_2, x_3)) -> timesIter(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_check(x_1) -> check(encArg(x_1)) encode_0 -> 0 encode_zero -> zero encode_s(x_1) -> s(encArg(x_1)) encode_odd -> odd encode_even -> even encode_half(x_1) -> half(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_timesIter(x_1, x_2, x_3) -> timesIter(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_p(x_1) -> p(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0) timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0) -> 0 if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(zero) -> zero encArg(s(x_1)) -> s(encArg(x_1)) encArg(odd) -> odd encArg(even) -> even encArg(cons_check(x_1)) -> check(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_timesIter(x_1, x_2, x_3)) -> timesIter(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_check(x_1) -> check(encArg(x_1)) encode_0 -> 0 encode_zero -> zero encode_s(x_1) -> s(encArg(x_1)) encode_odd -> odd encode_even -> even encode_half(x_1) -> half(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_timesIter(x_1, x_2, x_3) -> timesIter(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_p(x_1) -> p(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0) timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0) -> 0 if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(zero) -> zero encArg(s(x_1)) -> s(encArg(x_1)) encArg(odd) -> odd encArg(even) -> even encArg(cons_check(x_1)) -> check(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_timesIter(x_1, x_2, x_3)) -> timesIter(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_check(x_1) -> check(encArg(x_1)) encode_0 -> 0 encode_zero -> zero encode_s(x_1) -> s(encArg(x_1)) encode_odd -> odd encode_even -> even encode_half(x_1) -> half(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_timesIter(x_1, x_2, x_3) -> timesIter(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_p(x_1) -> p(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0) timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0) -> 0 if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(zero) -> zero encArg(s(x_1)) -> s(encArg(x_1)) encArg(odd) -> odd encArg(even) -> even encArg(cons_check(x_1)) -> check(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_timesIter(x_1, x_2, x_3)) -> timesIter(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_check(x_1) -> check(encArg(x_1)) encode_0 -> 0 encode_zero -> zero encode_s(x_1) -> s(encArg(x_1)) encode_odd -> odd encode_even -> even encode_half(x_1) -> half(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_timesIter(x_1, x_2, x_3) -> timesIter(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_p(x_1) -> p(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence check(s(s(s(x)))) ->^+ check(s(x)) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(s(x))]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0) timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0) -> 0 if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(zero) -> zero encArg(s(x_1)) -> s(encArg(x_1)) encArg(odd) -> odd encArg(even) -> even encArg(cons_check(x_1)) -> check(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_timesIter(x_1, x_2, x_3)) -> timesIter(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_check(x_1) -> check(encArg(x_1)) encode_0 -> 0 encode_zero -> zero encode_s(x_1) -> s(encArg(x_1)) encode_odd -> odd encode_even -> even encode_half(x_1) -> half(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_timesIter(x_1, x_2, x_3) -> timesIter(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_p(x_1) -> p(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0) timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0) -> 0 if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(zero) -> zero encArg(s(x_1)) -> s(encArg(x_1)) encArg(odd) -> odd encArg(even) -> even encArg(cons_check(x_1)) -> check(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_timesIter(x_1, x_2, x_3)) -> timesIter(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_check(x_1) -> check(encArg(x_1)) encode_0 -> 0 encode_zero -> zero encode_s(x_1) -> s(encArg(x_1)) encode_odd -> odd encode_even -> even encode_half(x_1) -> half(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_timesIter(x_1, x_2, x_3) -> timesIter(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_p(x_1) -> p(encArg(x_1)) Rewrite Strategy: INNERMOST