/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 193 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 45 ms] (18) CdtProblem (19) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (20) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(c(x, y), c(s(z), z), t(w)) -> h(z, c(y, x), t(t(c(x, c(y, t(w)))))) h(x, c(y, z), t(w)) -> h(c(s(y), x), z, t(c(t(w), w))) h(c(s(x), c(s(0), y)), z, t(x)) -> h(y, c(s(0), c(x, z)), t(t(c(x, s(x))))) t(t(x)) -> t(c(t(x), x)) t(x) -> x t(x) -> c(0, c(0, c(0, c(0, c(0, x))))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(c(x_1, x_2)) -> c(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_t(x_1)) -> t(encArg(x_1)) encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_c(x_1, x_2) -> c(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_t(x_1) -> t(encArg(x_1)) encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(c(x, y), c(s(z), z), t(w)) -> h(z, c(y, x), t(t(c(x, c(y, t(w)))))) h(x, c(y, z), t(w)) -> h(c(s(y), x), z, t(c(t(w), w))) h(c(s(x), c(s(0), y)), z, t(x)) -> h(y, c(s(0), c(x, z)), t(t(c(x, s(x))))) t(t(x)) -> t(c(t(x), x)) t(x) -> x t(x) -> c(0, c(0, c(0, c(0, c(0, x))))) The (relative) TRS S consists of the following rules: encArg(c(x_1, x_2)) -> c(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_t(x_1)) -> t(encArg(x_1)) encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_c(x_1, x_2) -> c(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_t(x_1) -> t(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(c(x, y), c(s(z), z), t(w)) -> h(z, c(y, x), t(t(c(x, c(y, t(w)))))) h(x, c(y, z), t(w)) -> h(c(s(y), x), z, t(c(t(w), w))) h(c(s(x), c(s(0), y)), z, t(x)) -> h(y, c(s(0), c(x, z)), t(t(c(x, s(x))))) t(t(x)) -> t(c(t(x), x)) t(x) -> x t(x) -> c(0, c(0, c(0, c(0, c(0, x))))) The (relative) TRS S consists of the following rules: encArg(c(x_1, x_2)) -> c(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_t(x_1)) -> t(encArg(x_1)) encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_c(x_1, x_2) -> c(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_t(x_1) -> t(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0, z1)) -> c(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1, z2)) -> h(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_t(z0)) -> t(encArg(z0)) encode_h(z0, z1, z2) -> h(encArg(z0), encArg(z1), encArg(z2)) encode_c(z0, z1) -> c(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_t(z0) -> t(encArg(z0)) encode_0 -> 0 h(c(z0, z1), c(s(z2), z2), t(z3)) -> h(z2, c(z1, z0), t(t(c(z0, c(z1, t(z3)))))) h(z0, c(z1, z2), t(z3)) -> h(c(s(z1), z0), z2, t(c(t(z3), z3))) h(c(s(z0), c(s(0), z1)), z2, t(z0)) -> h(z1, c(s(0), c(z0, z2)), t(t(c(z0, s(z0))))) t(t(z0)) -> t(c(t(z0), z0)) t(z0) -> z0 t(z0) -> c(0, c(0, c(0, c(0, c(0, z0))))) Tuples: ENCARG(c(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(0) -> c3 ENCARG(cons_h(z0, z1, z2)) -> c4(H(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_t(z0)) -> c5(T(encArg(z0)), ENCARG(z0)) ENCODE_H(z0, z1, z2) -> c6(H(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_C(z0, z1) -> c7(ENCARG(z0), ENCARG(z1)) ENCODE_S(z0) -> c8(ENCARG(z0)) ENCODE_T(z0) -> c9(T(encArg(z0)), ENCARG(z0)) ENCODE_0 -> c10 H(c(z0, z1), c(s(z2), z2), t(z3)) -> c11(H(z2, c(z1, z0), t(t(c(z0, c(z1, t(z3)))))), T(t(c(z0, c(z1, t(z3))))), T(c(z0, c(z1, t(z3)))), T(z3)) H(z0, c(z1, z2), t(z3)) -> c12(H(c(s(z1), z0), z2, t(c(t(z3), z3))), T(c(t(z3), z3)), T(z3)) H(c(s(z0), c(s(0), z1)), z2, t(z0)) -> c13(H(z1, c(s(0), c(z0, z2)), t(t(c(z0, s(z0))))), T(t(c(z0, s(z0)))), T(c(z0, s(z0)))) T(t(z0)) -> c14(T(c(t(z0), z0)), T(z0)) T(z0) -> c15 T(z0) -> c16 S tuples: H(c(z0, z1), c(s(z2), z2), t(z3)) -> c11(H(z2, c(z1, z0), t(t(c(z0, c(z1, t(z3)))))), T(t(c(z0, c(z1, t(z3))))), T(c(z0, c(z1, t(z3)))), T(z3)) H(z0, c(z1, z2), t(z3)) -> c12(H(c(s(z1), z0), z2, t(c(t(z3), z3))), T(c(t(z3), z3)), T(z3)) H(c(s(z0), c(s(0), z1)), z2, t(z0)) -> c13(H(z1, c(s(0), c(z0, z2)), t(t(c(z0, s(z0))))), T(t(c(z0, s(z0)))), T(c(z0, s(z0)))) T(t(z0)) -> c14(T(c(t(z0), z0)), T(z0)) T(z0) -> c15 T(z0) -> c16 K tuples:none Defined Rule Symbols: h_3, t_1, encArg_1, encode_h_3, encode_c_2, encode_s_1, encode_t_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_H_3, ENCODE_C_2, ENCODE_S_1, ENCODE_T_1, ENCODE_0, H_3, T_1 Compound Symbols: c1_2, c2_1, c3, c4_4, c5_2, c6_4, c7_2, c8_1, c9_2, c10, c11_4, c12_3, c13_3, c14_2, c15, c16 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 6 leading nodes: ENCODE_C(z0, z1) -> c7(ENCARG(z0), ENCARG(z1)) ENCODE_S(z0) -> c8(ENCARG(z0)) H(c(z0, z1), c(s(z2), z2), t(z3)) -> c11(H(z2, c(z1, z0), t(t(c(z0, c(z1, t(z3)))))), T(t(c(z0, c(z1, t(z3))))), T(c(z0, c(z1, t(z3)))), T(z3)) H(z0, c(z1, z2), t(z3)) -> c12(H(c(s(z1), z0), z2, t(c(t(z3), z3))), T(c(t(z3), z3)), T(z3)) H(c(s(z0), c(s(0), z1)), z2, t(z0)) -> c13(H(z1, c(s(0), c(z0, z2)), t(t(c(z0, s(z0))))), T(t(c(z0, s(z0)))), T(c(z0, s(z0)))) T(t(z0)) -> c14(T(c(t(z0), z0)), T(z0)) Removed 2 trailing nodes: ENCARG(0) -> c3 ENCODE_0 -> c10 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0, z1)) -> c(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1, z2)) -> h(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_t(z0)) -> t(encArg(z0)) encode_h(z0, z1, z2) -> h(encArg(z0), encArg(z1), encArg(z2)) encode_c(z0, z1) -> c(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_t(z0) -> t(encArg(z0)) encode_0 -> 0 h(c(z0, z1), c(s(z2), z2), t(z3)) -> h(z2, c(z1, z0), t(t(c(z0, c(z1, t(z3)))))) h(z0, c(z1, z2), t(z3)) -> h(c(s(z1), z0), z2, t(c(t(z3), z3))) h(c(s(z0), c(s(0), z1)), z2, t(z0)) -> h(z1, c(s(0), c(z0, z2)), t(t(c(z0, s(z0))))) t(t(z0)) -> t(c(t(z0), z0)) t(z0) -> z0 t(z0) -> c(0, c(0, c(0, c(0, c(0, z0))))) Tuples: ENCARG(c(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_h(z0, z1, z2)) -> c4(H(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_t(z0)) -> c5(T(encArg(z0)), ENCARG(z0)) ENCODE_H(z0, z1, z2) -> c6(H(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_T(z0) -> c9(T(encArg(z0)), ENCARG(z0)) T(z0) -> c15 T(z0) -> c16 S tuples: T(z0) -> c15 T(z0) -> c16 K tuples:none Defined Rule Symbols: h_3, t_1, encArg_1, encode_h_3, encode_c_2, encode_s_1, encode_t_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_H_3, ENCODE_T_1, T_1 Compound Symbols: c1_2, c2_1, c4_4, c5_2, c6_4, c9_2, c15, c16 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0, z1)) -> c(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1, z2)) -> h(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_t(z0)) -> t(encArg(z0)) encode_h(z0, z1, z2) -> h(encArg(z0), encArg(z1), encArg(z2)) encode_c(z0, z1) -> c(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_t(z0) -> t(encArg(z0)) encode_0 -> 0 h(c(z0, z1), c(s(z2), z2), t(z3)) -> h(z2, c(z1, z0), t(t(c(z0, c(z1, t(z3)))))) h(z0, c(z1, z2), t(z3)) -> h(c(s(z1), z0), z2, t(c(t(z3), z3))) h(c(s(z0), c(s(0), z1)), z2, t(z0)) -> h(z1, c(s(0), c(z0, z2)), t(t(c(z0, s(z0))))) t(t(z0)) -> t(c(t(z0), z0)) t(z0) -> z0 t(z0) -> c(0, c(0, c(0, c(0, c(0, z0))))) Tuples: ENCARG(c(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_t(z0)) -> c5(T(encArg(z0)), ENCARG(z0)) ENCODE_T(z0) -> c9(T(encArg(z0)), ENCARG(z0)) T(z0) -> c15 T(z0) -> c16 ENCARG(cons_h(z0, z1, z2)) -> c4(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_H(z0, z1, z2) -> c6(ENCARG(z0), ENCARG(z1), ENCARG(z2)) S tuples: T(z0) -> c15 T(z0) -> c16 K tuples:none Defined Rule Symbols: h_3, t_1, encArg_1, encode_h_3, encode_c_2, encode_s_1, encode_t_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_T_1, T_1, ENCODE_H_3 Compound Symbols: c1_2, c2_1, c5_2, c9_2, c15, c16, c4_3, c6_3 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0, z1)) -> c(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1, z2)) -> h(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_t(z0)) -> t(encArg(z0)) encode_h(z0, z1, z2) -> h(encArg(z0), encArg(z1), encArg(z2)) encode_c(z0, z1) -> c(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_t(z0) -> t(encArg(z0)) encode_0 -> 0 h(c(z0, z1), c(s(z2), z2), t(z3)) -> h(z2, c(z1, z0), t(t(c(z0, c(z1, t(z3)))))) h(z0, c(z1, z2), t(z3)) -> h(c(s(z1), z0), z2, t(c(t(z3), z3))) h(c(s(z0), c(s(0), z1)), z2, t(z0)) -> h(z1, c(s(0), c(z0, z2)), t(t(c(z0, s(z0))))) t(t(z0)) -> t(c(t(z0), z0)) t(z0) -> z0 t(z0) -> c(0, c(0, c(0, c(0, c(0, z0))))) Tuples: ENCARG(c(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_t(z0)) -> c5(T(encArg(z0)), ENCARG(z0)) T(z0) -> c15 T(z0) -> c16 ENCARG(cons_h(z0, z1, z2)) -> c4(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_T(z0) -> c3(T(encArg(z0))) ENCODE_T(z0) -> c3(ENCARG(z0)) ENCODE_H(z0, z1, z2) -> c3(ENCARG(z0)) ENCODE_H(z0, z1, z2) -> c3(ENCARG(z1)) ENCODE_H(z0, z1, z2) -> c3(ENCARG(z2)) S tuples: T(z0) -> c15 T(z0) -> c16 K tuples:none Defined Rule Symbols: h_3, t_1, encArg_1, encode_h_3, encode_c_2, encode_s_1, encode_t_1, encode_0 Defined Pair Symbols: ENCARG_1, T_1, ENCODE_T_1, ENCODE_H_3 Compound Symbols: c1_2, c2_1, c5_2, c15, c16, c4_3, c3_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 4 leading nodes: ENCODE_T(z0) -> c3(ENCARG(z0)) ENCODE_H(z0, z1, z2) -> c3(ENCARG(z0)) ENCODE_H(z0, z1, z2) -> c3(ENCARG(z1)) ENCODE_H(z0, z1, z2) -> c3(ENCARG(z2)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0, z1)) -> c(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1, z2)) -> h(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_t(z0)) -> t(encArg(z0)) encode_h(z0, z1, z2) -> h(encArg(z0), encArg(z1), encArg(z2)) encode_c(z0, z1) -> c(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_t(z0) -> t(encArg(z0)) encode_0 -> 0 h(c(z0, z1), c(s(z2), z2), t(z3)) -> h(z2, c(z1, z0), t(t(c(z0, c(z1, t(z3)))))) h(z0, c(z1, z2), t(z3)) -> h(c(s(z1), z0), z2, t(c(t(z3), z3))) h(c(s(z0), c(s(0), z1)), z2, t(z0)) -> h(z1, c(s(0), c(z0, z2)), t(t(c(z0, s(z0))))) t(t(z0)) -> t(c(t(z0), z0)) t(z0) -> z0 t(z0) -> c(0, c(0, c(0, c(0, c(0, z0))))) Tuples: ENCARG(c(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_t(z0)) -> c5(T(encArg(z0)), ENCARG(z0)) T(z0) -> c15 T(z0) -> c16 ENCARG(cons_h(z0, z1, z2)) -> c4(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_T(z0) -> c3(T(encArg(z0))) S tuples: T(z0) -> c15 T(z0) -> c16 K tuples:none Defined Rule Symbols: h_3, t_1, encArg_1, encode_h_3, encode_c_2, encode_s_1, encode_t_1, encode_0 Defined Pair Symbols: ENCARG_1, T_1, ENCODE_T_1 Compound Symbols: c1_2, c2_1, c5_2, c15, c16, c4_3, c3_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_h(z0, z1, z2) -> h(encArg(z0), encArg(z1), encArg(z2)) encode_c(z0, z1) -> c(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_t(z0) -> t(encArg(z0)) encode_0 -> 0 h(c(z0, z1), c(s(z2), z2), t(z3)) -> h(z2, c(z1, z0), t(t(c(z0, c(z1, t(z3)))))) h(z0, c(z1, z2), t(z3)) -> h(c(s(z1), z0), z2, t(c(t(z3), z3))) h(c(s(z0), c(s(0), z1)), z2, t(z0)) -> h(z1, c(s(0), c(z0, z2)), t(t(c(z0, s(z0))))) t(t(z0)) -> t(c(t(z0), z0)) ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0, z1)) -> c(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1, z2)) -> h(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_t(z0)) -> t(encArg(z0)) t(z0) -> z0 t(z0) -> c(0, c(0, c(0, c(0, c(0, z0))))) Tuples: ENCARG(c(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_t(z0)) -> c5(T(encArg(z0)), ENCARG(z0)) T(z0) -> c15 T(z0) -> c16 ENCARG(cons_h(z0, z1, z2)) -> c4(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_T(z0) -> c3(T(encArg(z0))) S tuples: T(z0) -> c15 T(z0) -> c16 K tuples:none Defined Rule Symbols: encArg_1, t_1 Defined Pair Symbols: ENCARG_1, T_1, ENCODE_T_1 Compound Symbols: c1_2, c2_1, c5_2, c15, c16, c4_3, c3_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. T(z0) -> c15 T(z0) -> c16 We considered the (Usable) Rules:none And the Tuples: ENCARG(c(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_t(z0)) -> c5(T(encArg(z0)), ENCARG(z0)) T(z0) -> c15 T(z0) -> c16 ENCARG(cons_h(z0, z1, z2)) -> c4(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_T(z0) -> c3(T(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(ENCARG(x_1)) = x_1 POL(ENCODE_T(x_1)) = [1] + x_1 POL(T(x_1)) = [1] POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c15) = 0 POL(c16) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1)) = x_1 POL(c4(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c5(x_1, x_2)) = x_1 + x_2 POL(cons_h(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(cons_t(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 POL(h(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(s(x_1)) = [1] + x_1 POL(t(x_1)) = [1] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0, z1)) -> c(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1, z2)) -> h(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_t(z0)) -> t(encArg(z0)) t(z0) -> z0 t(z0) -> c(0, c(0, c(0, c(0, c(0, z0))))) Tuples: ENCARG(c(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_t(z0)) -> c5(T(encArg(z0)), ENCARG(z0)) T(z0) -> c15 T(z0) -> c16 ENCARG(cons_h(z0, z1, z2)) -> c4(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_T(z0) -> c3(T(encArg(z0))) S tuples:none K tuples: T(z0) -> c15 T(z0) -> c16 Defined Rule Symbols: encArg_1, t_1 Defined Pair Symbols: ENCARG_1, T_1, ENCODE_T_1 Compound Symbols: c1_2, c2_1, c5_2, c15, c16, c4_3, c3_1 ---------------------------------------- (19) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (20) BOUNDS(1, 1)