/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 252 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [FINISHED, 0 ms] (8) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: lt(0, s(x)) -> true lt(x, 0) -> false lt(s(x), s(y)) -> lt(x, y) fibo(0) -> fib(0) fibo(s(0)) -> fib(s(0)) fibo(s(s(x))) -> sum(fibo(s(x)), fibo(x)) fib(0) -> s(0) fib(s(0)) -> s(0) fib(s(s(x))) -> if(true, 0, s(s(x)), 0, 0) if(true, c, s(s(x)), a, b) -> if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c) if(false, c, s(s(x)), a, b) -> sum(fibo(a), fibo(b)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons_lt(x_1, x_2)) -> lt(encArg(x_1), encArg(x_2)) encArg(cons_fibo(x_1)) -> fibo(encArg(x_1)) encArg(cons_fib(x_1)) -> fib(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encArg(cons_sum(x_1, x_2)) -> sum(encArg(x_1), encArg(x_2)) encode_lt(x_1, x_2) -> lt(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_true -> true encode_false -> false encode_fibo(x_1) -> fibo(encArg(x_1)) encode_fib(x_1) -> fib(encArg(x_1)) encode_sum(x_1, x_2) -> sum(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: lt(0, s(x)) -> true lt(x, 0) -> false lt(s(x), s(y)) -> lt(x, y) fibo(0) -> fib(0) fibo(s(0)) -> fib(s(0)) fibo(s(s(x))) -> sum(fibo(s(x)), fibo(x)) fib(0) -> s(0) fib(s(0)) -> s(0) fib(s(s(x))) -> if(true, 0, s(s(x)), 0, 0) if(true, c, s(s(x)), a, b) -> if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c) if(false, c, s(s(x)), a, b) -> sum(fibo(a), fibo(b)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons_lt(x_1, x_2)) -> lt(encArg(x_1), encArg(x_2)) encArg(cons_fibo(x_1)) -> fibo(encArg(x_1)) encArg(cons_fib(x_1)) -> fib(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encArg(cons_sum(x_1, x_2)) -> sum(encArg(x_1), encArg(x_2)) encode_lt(x_1, x_2) -> lt(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_true -> true encode_false -> false encode_fibo(x_1) -> fibo(encArg(x_1)) encode_fib(x_1) -> fib(encArg(x_1)) encode_sum(x_1, x_2) -> sum(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: lt(0, s(x)) -> true lt(x, 0) -> false lt(s(x), s(y)) -> lt(x, y) fibo(0) -> fib(0) fibo(s(0)) -> fib(s(0)) fibo(s(s(x))) -> sum(fibo(s(x)), fibo(x)) fib(0) -> s(0) fib(s(0)) -> s(0) fib(s(s(x))) -> if(true, 0, s(s(x)), 0, 0) if(true, c, s(s(x)), a, b) -> if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c) if(false, c, s(s(x)), a, b) -> sum(fibo(a), fibo(b)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons_lt(x_1, x_2)) -> lt(encArg(x_1), encArg(x_2)) encArg(cons_fibo(x_1)) -> fibo(encArg(x_1)) encArg(cons_fib(x_1)) -> fib(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encArg(cons_sum(x_1, x_2)) -> sum(encArg(x_1), encArg(x_2)) encode_lt(x_1, x_2) -> lt(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_true -> true encode_false -> false encode_fibo(x_1) -> fibo(encArg(x_1)) encode_fib(x_1) -> fib(encArg(x_1)) encode_sum(x_1, x_2) -> sum(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: lt(0, s(x)) -> true lt(x, 0) -> false lt(s(x), s(y)) -> lt(x, y) fibo(0) -> fib(0) fibo(s(0)) -> fib(s(0)) fibo(s(s(x))) -> sum(fibo(s(x)), fibo(x)) fib(0) -> s(0) fib(s(0)) -> s(0) fib(s(s(x))) -> if(true, 0, s(s(x)), 0, 0) if(true, c, s(s(x)), a, b) -> if(lt(s(c), s(s(x))), s(c), s(s(x)), b, c) if(false, c, s(s(x)), a, b) -> sum(fibo(a), fibo(b)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons_lt(x_1, x_2)) -> lt(encArg(x_1), encArg(x_2)) encArg(cons_fibo(x_1)) -> fibo(encArg(x_1)) encArg(cons_fib(x_1)) -> fib(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encArg(cons_sum(x_1, x_2)) -> sum(encArg(x_1), encArg(x_2)) encode_lt(x_1, x_2) -> lt(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_true -> true encode_false -> false encode_fibo(x_1) -> fibo(encArg(x_1)) encode_fib(x_1) -> fib(encArg(x_1)) encode_sum(x_1, x_2) -> sum(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (FINISHED) The following loop(s) give(s) rise to the lower bound EXP: The rewrite sequence fibo(s(s(x))) ->^+ sum(fibo(s(x)), fibo(x)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / s(x)]. The result substitution is [ ]. The rewrite sequence fibo(s(s(x))) ->^+ sum(fibo(s(x)), fibo(x)) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [x / s(s(x))]. The result substitution is [ ]. ---------------------------------------- (8) BOUNDS(EXP, INF)