/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 175 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 352 ms] (12) proven lower bound (13) LowerBoundPropagationProof [FINISHED, 0 ms] (14) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: app(id, x) -> x app(add, 0) -> id app(app(add, app(s, x)), y) -> app(s, app(app(add, x), y)) app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(id) -> id encArg(add) -> add encArg(0) -> 0 encArg(s) -> s encArg(map) -> map encArg(nil) -> nil encArg(cons) -> cons encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_id -> id encode_add -> add encode_0 -> 0 encode_s -> s encode_map -> map encode_nil -> nil encode_cons -> cons ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: app(id, x) -> x app(add, 0) -> id app(app(add, app(s, x)), y) -> app(s, app(app(add, x), y)) app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) The (relative) TRS S consists of the following rules: encArg(id) -> id encArg(add) -> add encArg(0) -> 0 encArg(s) -> s encArg(map) -> map encArg(nil) -> nil encArg(cons) -> cons encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_id -> id encode_add -> add encode_0 -> 0 encode_s -> s encode_map -> map encode_nil -> nil encode_cons -> cons Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: app(id, x) -> x app(add, 0) -> id app(app(add, app(s, x)), y) -> app(s, app(app(add, x), y)) app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) The (relative) TRS S consists of the following rules: encArg(id) -> id encArg(add) -> add encArg(0) -> 0 encArg(s) -> s encArg(map) -> map encArg(nil) -> nil encArg(cons) -> cons encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_id -> id encode_add -> add encode_0 -> 0 encode_s -> s encode_map -> map encode_nil -> nil encode_cons -> cons Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: app(id, x) -> x app(add, 0') -> id app(app(add, app(s, x)), y) -> app(s, app(app(add, x), y)) app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) The (relative) TRS S consists of the following rules: encArg(id) -> id encArg(add) -> add encArg(0') -> 0' encArg(s) -> s encArg(map) -> map encArg(nil) -> nil encArg(cons) -> cons encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_id -> id encode_add -> add encode_0 -> 0' encode_s -> s encode_map -> map encode_nil -> nil encode_cons -> cons Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: app(id, x) -> x app(add, 0') -> id app(app(add, app(s, x)), y) -> app(s, app(app(add, x), y)) app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) encArg(id) -> id encArg(add) -> add encArg(0') -> 0' encArg(s) -> s encArg(map) -> map encArg(nil) -> nil encArg(cons) -> cons encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_id -> id encode_add -> add encode_0 -> 0' encode_s -> s encode_map -> map encode_nil -> nil encode_cons -> cons Types: app :: id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app id :: id:add:0':s:map:nil:cons:cons_app add :: id:add:0':s:map:nil:cons:cons_app 0' :: id:add:0':s:map:nil:cons:cons_app s :: id:add:0':s:map:nil:cons:cons_app map :: id:add:0':s:map:nil:cons:cons_app nil :: id:add:0':s:map:nil:cons:cons_app cons :: id:add:0':s:map:nil:cons:cons_app encArg :: id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app cons_app :: id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app encode_app :: id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app encode_id :: id:add:0':s:map:nil:cons:cons_app encode_add :: id:add:0':s:map:nil:cons:cons_app encode_0 :: id:add:0':s:map:nil:cons:cons_app encode_s :: id:add:0':s:map:nil:cons:cons_app encode_map :: id:add:0':s:map:nil:cons:cons_app encode_nil :: id:add:0':s:map:nil:cons:cons_app encode_cons :: id:add:0':s:map:nil:cons:cons_app hole_id:add:0':s:map:nil:cons:cons_app1_3 :: id:add:0':s:map:nil:cons:cons_app gen_id:add:0':s:map:nil:cons:cons_app2_3 :: Nat -> id:add:0':s:map:nil:cons:cons_app ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: app, encArg They will be analysed ascendingly in the following order: app < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: app(id, x) -> x app(add, 0') -> id app(app(add, app(s, x)), y) -> app(s, app(app(add, x), y)) app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) encArg(id) -> id encArg(add) -> add encArg(0') -> 0' encArg(s) -> s encArg(map) -> map encArg(nil) -> nil encArg(cons) -> cons encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_id -> id encode_add -> add encode_0 -> 0' encode_s -> s encode_map -> map encode_nil -> nil encode_cons -> cons Types: app :: id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app id :: id:add:0':s:map:nil:cons:cons_app add :: id:add:0':s:map:nil:cons:cons_app 0' :: id:add:0':s:map:nil:cons:cons_app s :: id:add:0':s:map:nil:cons:cons_app map :: id:add:0':s:map:nil:cons:cons_app nil :: id:add:0':s:map:nil:cons:cons_app cons :: id:add:0':s:map:nil:cons:cons_app encArg :: id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app cons_app :: id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app encode_app :: id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app encode_id :: id:add:0':s:map:nil:cons:cons_app encode_add :: id:add:0':s:map:nil:cons:cons_app encode_0 :: id:add:0':s:map:nil:cons:cons_app encode_s :: id:add:0':s:map:nil:cons:cons_app encode_map :: id:add:0':s:map:nil:cons:cons_app encode_nil :: id:add:0':s:map:nil:cons:cons_app encode_cons :: id:add:0':s:map:nil:cons:cons_app hole_id:add:0':s:map:nil:cons:cons_app1_3 :: id:add:0':s:map:nil:cons:cons_app gen_id:add:0':s:map:nil:cons:cons_app2_3 :: Nat -> id:add:0':s:map:nil:cons:cons_app Generator Equations: gen_id:add:0':s:map:nil:cons:cons_app2_3(0) <=> id gen_id:add:0':s:map:nil:cons:cons_app2_3(+(x, 1)) <=> cons_app(id, gen_id:add:0':s:map:nil:cons:cons_app2_3(x)) The following defined symbols remain to be analysed: app, encArg They will be analysed ascendingly in the following order: app < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_id:add:0':s:map:nil:cons:cons_app2_3(n134_3)) -> gen_id:add:0':s:map:nil:cons:cons_app2_3(0), rt in Omega(n134_3) Induction Base: encArg(gen_id:add:0':s:map:nil:cons:cons_app2_3(0)) ->_R^Omega(0) id Induction Step: encArg(gen_id:add:0':s:map:nil:cons:cons_app2_3(+(n134_3, 1))) ->_R^Omega(0) app(encArg(id), encArg(gen_id:add:0':s:map:nil:cons:cons_app2_3(n134_3))) ->_R^Omega(0) app(id, encArg(gen_id:add:0':s:map:nil:cons:cons_app2_3(n134_3))) ->_IH app(id, gen_id:add:0':s:map:nil:cons:cons_app2_3(0)) ->_R^Omega(1) gen_id:add:0':s:map:nil:cons:cons_app2_3(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: app(id, x) -> x app(add, 0') -> id app(app(add, app(s, x)), y) -> app(s, app(app(add, x), y)) app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) encArg(id) -> id encArg(add) -> add encArg(0') -> 0' encArg(s) -> s encArg(map) -> map encArg(nil) -> nil encArg(cons) -> cons encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_id -> id encode_add -> add encode_0 -> 0' encode_s -> s encode_map -> map encode_nil -> nil encode_cons -> cons Types: app :: id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app id :: id:add:0':s:map:nil:cons:cons_app add :: id:add:0':s:map:nil:cons:cons_app 0' :: id:add:0':s:map:nil:cons:cons_app s :: id:add:0':s:map:nil:cons:cons_app map :: id:add:0':s:map:nil:cons:cons_app nil :: id:add:0':s:map:nil:cons:cons_app cons :: id:add:0':s:map:nil:cons:cons_app encArg :: id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app cons_app :: id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app encode_app :: id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app -> id:add:0':s:map:nil:cons:cons_app encode_id :: id:add:0':s:map:nil:cons:cons_app encode_add :: id:add:0':s:map:nil:cons:cons_app encode_0 :: id:add:0':s:map:nil:cons:cons_app encode_s :: id:add:0':s:map:nil:cons:cons_app encode_map :: id:add:0':s:map:nil:cons:cons_app encode_nil :: id:add:0':s:map:nil:cons:cons_app encode_cons :: id:add:0':s:map:nil:cons:cons_app hole_id:add:0':s:map:nil:cons:cons_app1_3 :: id:add:0':s:map:nil:cons:cons_app gen_id:add:0':s:map:nil:cons:cons_app2_3 :: Nat -> id:add:0':s:map:nil:cons:cons_app Generator Equations: gen_id:add:0':s:map:nil:cons:cons_app2_3(0) <=> id gen_id:add:0':s:map:nil:cons:cons_app2_3(+(x, 1)) <=> cons_app(id, gen_id:add:0':s:map:nil:cons:cons_app2_3(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (13) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (14) BOUNDS(n^1, INF)