/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 291 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 97 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 45 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 286 ms] (22) CdtProblem (23) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (24) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x)) g(0, 1) -> 0 g(0, 1) -> 1 h(g(x, y)) -> h(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1, x_2, x_3, x_4)) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_f(x_1, x_2, x_3, x_4) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_0 -> 0 encode_1 -> 1 encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1) -> h(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x)) g(0, 1) -> 0 g(0, 1) -> 1 h(g(x, y)) -> h(x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1, x_2, x_3, x_4)) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_f(x_1, x_2, x_3, x_4) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_0 -> 0 encode_1 -> 1 encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x)) g(0, 1) -> 0 g(0, 1) -> 1 h(g(x, y)) -> h(x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1, x_2, x_3, x_4)) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_f(x_1, x_2, x_3, x_4) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_0 -> 0 encode_1 -> 1 encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2, z3)) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encArg(cons_h(z0)) -> h(encArg(z0)) encode_f(z0, z1, z2, z3) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) encode_0 -> 0 encode_1 -> 1 encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_h(z0) -> h(encArg(z0)) f(0, 1, g(z0, z1), z2) -> f(g(z0, z1), g(z0, z1), g(z0, z1), h(z0)) g(0, 1) -> 0 g(0, 1) -> 1 h(g(z0, z1)) -> h(z0) Tuples: ENCARG(0) -> c ENCARG(1) -> c1 ENCARG(cons_f(z0, z1, z2, z3)) -> c2(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3)), ENCARG(z0), ENCARG(z1), ENCARG(z2), ENCARG(z3)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_h(z0)) -> c4(H(encArg(z0)), ENCARG(z0)) ENCODE_F(z0, z1, z2, z3) -> c5(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3)), ENCARG(z0), ENCARG(z1), ENCARG(z2), ENCARG(z3)) ENCODE_0 -> c6 ENCODE_1 -> c7 ENCODE_G(z0, z1) -> c8(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_H(z0) -> c9(H(encArg(z0)), ENCARG(z0)) F(0, 1, g(z0, z1), z2) -> c10(F(g(z0, z1), g(z0, z1), g(z0, z1), h(z0)), G(z0, z1), G(z0, z1), G(z0, z1), H(z0)) G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) S tuples: F(0, 1, g(z0, z1), z2) -> c10(F(g(z0, z1), g(z0, z1), g(z0, z1), h(z0)), G(z0, z1), G(z0, z1), G(z0, z1), H(z0)) G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) K tuples:none Defined Rule Symbols: f_4, g_2, h_1, encArg_1, encode_f_4, encode_0, encode_1, encode_g_2, encode_h_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_4, ENCODE_0, ENCODE_1, ENCODE_G_2, ENCODE_H_1, F_4, G_2, H_1 Compound Symbols: c, c1, c2_5, c3_3, c4_2, c5_5, c6, c7, c8_3, c9_2, c10_5, c11, c12, c13_1 ---------------------------------------- (7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: ENCODE_1 -> c7 ENCARG(0) -> c ENCODE_0 -> c6 ENCARG(1) -> c1 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2, z3)) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encArg(cons_h(z0)) -> h(encArg(z0)) encode_f(z0, z1, z2, z3) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) encode_0 -> 0 encode_1 -> 1 encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_h(z0) -> h(encArg(z0)) f(0, 1, g(z0, z1), z2) -> f(g(z0, z1), g(z0, z1), g(z0, z1), h(z0)) g(0, 1) -> 0 g(0, 1) -> 1 h(g(z0, z1)) -> h(z0) Tuples: ENCARG(cons_f(z0, z1, z2, z3)) -> c2(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3)), ENCARG(z0), ENCARG(z1), ENCARG(z2), ENCARG(z3)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_h(z0)) -> c4(H(encArg(z0)), ENCARG(z0)) ENCODE_F(z0, z1, z2, z3) -> c5(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3)), ENCARG(z0), ENCARG(z1), ENCARG(z2), ENCARG(z3)) ENCODE_G(z0, z1) -> c8(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_H(z0) -> c9(H(encArg(z0)), ENCARG(z0)) F(0, 1, g(z0, z1), z2) -> c10(F(g(z0, z1), g(z0, z1), g(z0, z1), h(z0)), G(z0, z1), G(z0, z1), G(z0, z1), H(z0)) G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) S tuples: F(0, 1, g(z0, z1), z2) -> c10(F(g(z0, z1), g(z0, z1), g(z0, z1), h(z0)), G(z0, z1), G(z0, z1), G(z0, z1), H(z0)) G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) K tuples:none Defined Rule Symbols: f_4, g_2, h_1, encArg_1, encode_f_4, encode_0, encode_1, encode_g_2, encode_h_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_4, ENCODE_G_2, ENCODE_H_1, F_4, G_2, H_1 Compound Symbols: c2_5, c3_3, c4_2, c5_5, c8_3, c9_2, c10_5, c11, c12, c13_1 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2, z3)) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encArg(cons_h(z0)) -> h(encArg(z0)) encode_f(z0, z1, z2, z3) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) encode_0 -> 0 encode_1 -> 1 encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_h(z0) -> h(encArg(z0)) f(0, 1, g(z0, z1), z2) -> f(g(z0, z1), g(z0, z1), g(z0, z1), h(z0)) g(0, 1) -> 0 g(0, 1) -> 1 h(g(z0, z1)) -> h(z0) Tuples: ENCARG(cons_f(z0, z1, z2, z3)) -> c2(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3)), ENCARG(z0), ENCARG(z1), ENCARG(z2), ENCARG(z3)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_h(z0)) -> c4(H(encArg(z0)), ENCARG(z0)) ENCODE_F(z0, z1, z2, z3) -> c5(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3)), ENCARG(z0), ENCARG(z1), ENCARG(z2), ENCARG(z3)) ENCODE_G(z0, z1) -> c8(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_H(z0) -> c9(H(encArg(z0)), ENCARG(z0)) G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) F(0, 1, g(z0, z1), z2) -> c10(G(z0, z1), G(z0, z1), G(z0, z1), H(z0)) S tuples: G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) F(0, 1, g(z0, z1), z2) -> c10(G(z0, z1), G(z0, z1), G(z0, z1), H(z0)) K tuples:none Defined Rule Symbols: f_4, g_2, h_1, encArg_1, encode_f_4, encode_0, encode_1, encode_g_2, encode_h_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_4, ENCODE_G_2, ENCODE_H_1, G_2, H_1, F_4 Compound Symbols: c2_5, c3_3, c4_2, c5_5, c8_3, c9_2, c11, c12, c13_1, c10_4 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2, z3)) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encArg(cons_h(z0)) -> h(encArg(z0)) encode_f(z0, z1, z2, z3) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) encode_0 -> 0 encode_1 -> 1 encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_h(z0) -> h(encArg(z0)) f(0, 1, g(z0, z1), z2) -> f(g(z0, z1), g(z0, z1), g(z0, z1), h(z0)) g(0, 1) -> 0 g(0, 1) -> 1 h(g(z0, z1)) -> h(z0) Tuples: ENCARG(cons_f(z0, z1, z2, z3)) -> c2(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3)), ENCARG(z0), ENCARG(z1), ENCARG(z2), ENCARG(z3)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_h(z0)) -> c4(H(encArg(z0)), ENCARG(z0)) G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) ENCODE_F(z0, z1, z2, z3) -> c(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3))) ENCODE_F(z0, z1, z2, z3) -> c(ENCARG(z0)) ENCODE_F(z0, z1, z2, z3) -> c(ENCARG(z1)) ENCODE_F(z0, z1, z2, z3) -> c(ENCARG(z2)) ENCODE_F(z0, z1, z2, z3) -> c(ENCARG(z3)) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) ENCODE_G(z0, z1) -> c(ENCARG(z0)) ENCODE_G(z0, z1) -> c(ENCARG(z1)) ENCODE_H(z0) -> c(H(encArg(z0))) ENCODE_H(z0) -> c(ENCARG(z0)) F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) F(0, 1, g(z0, z1), z2) -> c(H(z0)) S tuples: G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) F(0, 1, g(z0, z1), z2) -> c(H(z0)) K tuples:none Defined Rule Symbols: f_4, g_2, h_1, encArg_1, encode_f_4, encode_0, encode_1, encode_g_2, encode_h_1 Defined Pair Symbols: ENCARG_1, G_2, H_1, ENCODE_F_4, ENCODE_G_2, ENCODE_H_1, F_4 Compound Symbols: c2_5, c3_3, c4_2, c11, c12, c13_1, c_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 7 leading nodes: ENCODE_F(z0, z1, z2, z3) -> c(ENCARG(z0)) ENCODE_F(z0, z1, z2, z3) -> c(ENCARG(z1)) ENCODE_F(z0, z1, z2, z3) -> c(ENCARG(z2)) ENCODE_F(z0, z1, z2, z3) -> c(ENCARG(z3)) ENCODE_G(z0, z1) -> c(ENCARG(z0)) ENCODE_G(z0, z1) -> c(ENCARG(z1)) ENCODE_H(z0) -> c(ENCARG(z0)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2, z3)) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encArg(cons_h(z0)) -> h(encArg(z0)) encode_f(z0, z1, z2, z3) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) encode_0 -> 0 encode_1 -> 1 encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_h(z0) -> h(encArg(z0)) f(0, 1, g(z0, z1), z2) -> f(g(z0, z1), g(z0, z1), g(z0, z1), h(z0)) g(0, 1) -> 0 g(0, 1) -> 1 h(g(z0, z1)) -> h(z0) Tuples: ENCARG(cons_f(z0, z1, z2, z3)) -> c2(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3)), ENCARG(z0), ENCARG(z1), ENCARG(z2), ENCARG(z3)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_h(z0)) -> c4(H(encArg(z0)), ENCARG(z0)) G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) ENCODE_F(z0, z1, z2, z3) -> c(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3))) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) ENCODE_H(z0) -> c(H(encArg(z0))) F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) F(0, 1, g(z0, z1), z2) -> c(H(z0)) S tuples: G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) F(0, 1, g(z0, z1), z2) -> c(H(z0)) K tuples:none Defined Rule Symbols: f_4, g_2, h_1, encArg_1, encode_f_4, encode_0, encode_1, encode_g_2, encode_h_1 Defined Pair Symbols: ENCARG_1, G_2, H_1, ENCODE_F_4, ENCODE_G_2, ENCODE_H_1, F_4 Compound Symbols: c2_5, c3_3, c4_2, c11, c12, c13_1, c_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0, z1, z2, z3) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) encode_0 -> 0 encode_1 -> 1 encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_h(z0) -> h(encArg(z0)) ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2, z3)) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encArg(cons_h(z0)) -> h(encArg(z0)) f(0, 1, g(z0, z1), z2) -> f(g(z0, z1), g(z0, z1), g(z0, z1), h(z0)) g(0, 1) -> 0 g(0, 1) -> 1 h(g(z0, z1)) -> h(z0) Tuples: ENCARG(cons_f(z0, z1, z2, z3)) -> c2(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3)), ENCARG(z0), ENCARG(z1), ENCARG(z2), ENCARG(z3)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_h(z0)) -> c4(H(encArg(z0)), ENCARG(z0)) G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) ENCODE_F(z0, z1, z2, z3) -> c(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3))) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) ENCODE_H(z0) -> c(H(encArg(z0))) F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) F(0, 1, g(z0, z1), z2) -> c(H(z0)) S tuples: G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) F(0, 1, g(z0, z1), z2) -> c(H(z0)) K tuples:none Defined Rule Symbols: encArg_1, f_4, g_2, h_1 Defined Pair Symbols: ENCARG_1, G_2, H_1, ENCODE_F_4, ENCODE_G_2, ENCODE_H_1, F_4 Compound Symbols: c2_5, c3_3, c4_2, c11, c12, c13_1, c_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(0, 1) -> c11 G(0, 1) -> c12 F(0, 1, g(z0, z1), z2) -> c(H(z0)) We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_f(z0, z1, z2, z3)) -> c2(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3)), ENCARG(z0), ENCARG(z1), ENCARG(z2), ENCARG(z3)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_h(z0)) -> c4(H(encArg(z0)), ENCARG(z0)) G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) ENCODE_F(z0, z1, z2, z3) -> c(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3))) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) ENCODE_H(z0) -> c(H(encArg(z0))) F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) F(0, 1, g(z0, z1), z2) -> c(H(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [1] POL(1) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2, x_3, x_4)) = [1] + x_1 + x_2 + x_3 POL(ENCODE_G(x_1, x_2)) = [1] POL(ENCODE_H(x_1)) = x_1 POL(F(x_1, x_2, x_3, x_4)) = [1] POL(G(x_1, x_2)) = [1] POL(H(x_1)) = 0 POL(c(x_1)) = x_1 POL(c11) = 0 POL(c12) = 0 POL(c13(x_1)) = x_1 POL(c2(x_1, x_2, x_3, x_4, x_5)) = x_1 + x_2 + x_3 + x_4 + x_5 POL(c3(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c4(x_1, x_2)) = x_1 + x_2 POL(cons_f(x_1, x_2, x_3, x_4)) = [1] + x_1 + x_2 + x_3 + x_4 POL(cons_g(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_h(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1, x_2, x_3, x_4)) = [1] + x_3 + x_4 POL(g(x_1, x_2)) = x_2 POL(h(x_1)) = [1] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2, z3)) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encArg(cons_h(z0)) -> h(encArg(z0)) f(0, 1, g(z0, z1), z2) -> f(g(z0, z1), g(z0, z1), g(z0, z1), h(z0)) g(0, 1) -> 0 g(0, 1) -> 1 h(g(z0, z1)) -> h(z0) Tuples: ENCARG(cons_f(z0, z1, z2, z3)) -> c2(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3)), ENCARG(z0), ENCARG(z1), ENCARG(z2), ENCARG(z3)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_h(z0)) -> c4(H(encArg(z0)), ENCARG(z0)) G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) ENCODE_F(z0, z1, z2, z3) -> c(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3))) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) ENCODE_H(z0) -> c(H(encArg(z0))) F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) F(0, 1, g(z0, z1), z2) -> c(H(z0)) S tuples: H(g(z0, z1)) -> c13(H(z0)) F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) K tuples: G(0, 1) -> c11 G(0, 1) -> c12 F(0, 1, g(z0, z1), z2) -> c(H(z0)) Defined Rule Symbols: encArg_1, f_4, g_2, h_1 Defined Pair Symbols: ENCARG_1, G_2, H_1, ENCODE_F_4, ENCODE_G_2, ENCODE_H_1, F_4 Compound Symbols: c2_5, c3_3, c4_2, c11, c12, c13_1, c_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_f(z0, z1, z2, z3)) -> c2(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3)), ENCARG(z0), ENCARG(z1), ENCARG(z2), ENCARG(z3)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_h(z0)) -> c4(H(encArg(z0)), ENCARG(z0)) G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) ENCODE_F(z0, z1, z2, z3) -> c(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3))) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) ENCODE_H(z0) -> c(H(encArg(z0))) F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) F(0, 1, g(z0, z1), z2) -> c(H(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [1] POL(1) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2, x_3, x_4)) = [1] + x_3 + x_4 POL(ENCODE_G(x_1, x_2)) = 0 POL(ENCODE_H(x_1)) = [1] POL(F(x_1, x_2, x_3, x_4)) = [1] POL(G(x_1, x_2)) = 0 POL(H(x_1)) = [1] POL(c(x_1)) = x_1 POL(c11) = 0 POL(c12) = 0 POL(c13(x_1)) = x_1 POL(c2(x_1, x_2, x_3, x_4, x_5)) = x_1 + x_2 + x_3 + x_4 + x_5 POL(c3(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c4(x_1, x_2)) = x_1 + x_2 POL(cons_f(x_1, x_2, x_3, x_4)) = [1] + x_1 + x_2 + x_3 + x_4 POL(cons_g(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_h(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1, x_2, x_3, x_4)) = [1] + x_3 + x_4 POL(g(x_1, x_2)) = x_2 POL(h(x_1)) = [1] + x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2, z3)) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encArg(cons_h(z0)) -> h(encArg(z0)) f(0, 1, g(z0, z1), z2) -> f(g(z0, z1), g(z0, z1), g(z0, z1), h(z0)) g(0, 1) -> 0 g(0, 1) -> 1 h(g(z0, z1)) -> h(z0) Tuples: ENCARG(cons_f(z0, z1, z2, z3)) -> c2(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3)), ENCARG(z0), ENCARG(z1), ENCARG(z2), ENCARG(z3)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_h(z0)) -> c4(H(encArg(z0)), ENCARG(z0)) G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) ENCODE_F(z0, z1, z2, z3) -> c(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3))) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) ENCODE_H(z0) -> c(H(encArg(z0))) F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) F(0, 1, g(z0, z1), z2) -> c(H(z0)) S tuples: H(g(z0, z1)) -> c13(H(z0)) K tuples: G(0, 1) -> c11 G(0, 1) -> c12 F(0, 1, g(z0, z1), z2) -> c(H(z0)) F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) Defined Rule Symbols: encArg_1, f_4, g_2, h_1 Defined Pair Symbols: ENCARG_1, G_2, H_1, ENCODE_F_4, ENCODE_G_2, ENCODE_H_1, F_4 Compound Symbols: c2_5, c3_3, c4_2, c11, c12, c13_1, c_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. H(g(z0, z1)) -> c13(H(z0)) We considered the (Usable) Rules: encArg(cons_f(z0, z1, z2, z3)) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) f(0, 1, g(z0, z1), z2) -> f(g(z0, z1), g(z0, z1), g(z0, z1), h(z0)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(0) -> 0 encArg(1) -> 1 g(0, 1) -> 0 g(0, 1) -> 1 h(g(z0, z1)) -> h(z0) And the Tuples: ENCARG(cons_f(z0, z1, z2, z3)) -> c2(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3)), ENCARG(z0), ENCARG(z1), ENCARG(z2), ENCARG(z3)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_h(z0)) -> c4(H(encArg(z0)), ENCARG(z0)) G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) ENCODE_F(z0, z1, z2, z3) -> c(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3))) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) ENCODE_H(z0) -> c(H(encArg(z0))) F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) F(0, 1, g(z0, z1), z2) -> c(H(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(1) = 0 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_F(x_1, x_2, x_3, x_4)) = [2] + x_1 + [2]x_2 + [2]x_3 + x_4 + [2]x_4^2 + [2]x_3*x_4 + [2]x_2*x_4 + [2]x_1*x_4 + [2]x_1^2 + [2]x_1*x_2 + [2]x_1*x_3 + [2]x_3^2 + x_2*x_3 + [2]x_2^2 POL(ENCODE_G(x_1, x_2)) = [2] + [2]x_1 + x_2^2 + x_1*x_2 + x_1^2 POL(ENCODE_H(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(F(x_1, x_2, x_3, x_4)) = [2]x_3 POL(G(x_1, x_2)) = 0 POL(H(x_1)) = [2]x_1 POL(c(x_1)) = x_1 POL(c11) = 0 POL(c12) = 0 POL(c13(x_1)) = x_1 POL(c2(x_1, x_2, x_3, x_4, x_5)) = x_1 + x_2 + x_3 + x_4 + x_5 POL(c3(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c4(x_1, x_2)) = x_1 + x_2 POL(cons_f(x_1, x_2, x_3, x_4)) = [2] + x_1 + x_2 + x_3 + x_4 POL(cons_g(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_h(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 POL(f(x_1, x_2, x_3, x_4)) = x_3 + x_4 POL(g(x_1, x_2)) = [1] + x_1 POL(h(x_1)) = 0 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2, z3)) -> f(encArg(z0), encArg(z1), encArg(z2), encArg(z3)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encArg(cons_h(z0)) -> h(encArg(z0)) f(0, 1, g(z0, z1), z2) -> f(g(z0, z1), g(z0, z1), g(z0, z1), h(z0)) g(0, 1) -> 0 g(0, 1) -> 1 h(g(z0, z1)) -> h(z0) Tuples: ENCARG(cons_f(z0, z1, z2, z3)) -> c2(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3)), ENCARG(z0), ENCARG(z1), ENCARG(z2), ENCARG(z3)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_h(z0)) -> c4(H(encArg(z0)), ENCARG(z0)) G(0, 1) -> c11 G(0, 1) -> c12 H(g(z0, z1)) -> c13(H(z0)) ENCODE_F(z0, z1, z2, z3) -> c(F(encArg(z0), encArg(z1), encArg(z2), encArg(z3))) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) ENCODE_H(z0) -> c(H(encArg(z0))) F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) F(0, 1, g(z0, z1), z2) -> c(H(z0)) S tuples:none K tuples: G(0, 1) -> c11 G(0, 1) -> c12 F(0, 1, g(z0, z1), z2) -> c(H(z0)) F(0, 1, g(z0, z1), z2) -> c(G(z0, z1)) H(g(z0, z1)) -> c13(H(z0)) Defined Rule Symbols: encArg_1, f_4, g_2, h_1 Defined Pair Symbols: ENCARG_1, G_2, H_1, ENCODE_F_4, ENCODE_G_2, ENCODE_H_1, F_4 Compound Symbols: c2_5, c3_3, c4_2, c11, c12, c13_1, c_1 ---------------------------------------- (23) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (24) BOUNDS(1, 1)