/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 177 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxWeightedTrs (9) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxWeightedTrs (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedTrs (13) CompletionProof [UPPER BOUND(ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxTypedWeightedCompleteTrs (17) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) InliningProof [UPPER BOUND(ID), 228 ms] (20) CpxRNTS (21) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRNTS (23) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 111 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 33 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 66 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 148 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 180 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 63 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 106 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 31 ms] (54) CpxRNTS (55) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 664 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 361 ms] (60) CpxRNTS (61) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 148 ms] (64) CpxRNTS (65) IntTrsBoundProof [UPPER BOUND(ID), 63 ms] (66) CpxRNTS (67) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 300 ms] (70) CpxRNTS (71) IntTrsBoundProof [UPPER BOUND(ID), 108 ms] (72) CpxRNTS (73) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 138 ms] (76) CpxRNTS (77) IntTrsBoundProof [UPPER BOUND(ID), 53 ms] (78) CpxRNTS (79) FinalProof [FINISHED, 0 ms] (80) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(s(x)) -> f(g(x, x)) g(0, 1) -> s(0) 0 -> 1 S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(1) -> 1 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_0) -> 0 encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_1 -> 1 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(s(x)) -> f(g(x, x)) g(0, 1) -> s(0) 0 -> 1 The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(1) -> 1 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_0) -> 0 encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_1 -> 1 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(s(x)) -> f(g(x, x)) g(0, 1) -> s(0) 0 -> 1 The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(1) -> 1 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_0) -> 0 encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_1 -> 1 Rewrite Strategy: INNERMOST ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(s(x)) -> f(g(x, x)) 0 -> 1 g(c_0, 1) -> s(0) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(1) -> 1 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_0) -> 0 encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_1 -> 1 0 -> c_0 Rewrite Strategy: INNERMOST ---------------------------------------- (7) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(s(x)) -> f(g(x, x)) [1] 0 -> 1 [1] g(c_0, 1) -> s(0) [1] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(1) -> 1 [0] encArg(cons_f(x_1)) -> f(encArg(x_1)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(cons_0) -> 0 [0] encode_f(x_1) -> f(encArg(x_1)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] 0 -> c_0 [0] Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: 0 => 0' ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(s(x)) -> f(g(x, x)) [1] 0' -> 1 [1] g(c_0, 1) -> s(0') [1] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(1) -> 1 [0] encArg(cons_f(x_1)) -> f(encArg(x_1)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(cons_0) -> 0' [0] encode_f(x_1) -> f(encArg(x_1)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0' [0] encode_1 -> 1 [0] 0' -> c_0 [0] Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(s(x)) -> f(g(x, x)) [1] 0' -> 1 [1] g(c_0, 1) -> s(0') [1] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(1) -> 1 [0] encArg(cons_f(x_1)) -> f(encArg(x_1)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(cons_0) -> 0' [0] encode_f(x_1) -> f(encArg(x_1)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0' [0] encode_1 -> 1 [0] 0' -> c_0 [0] The TRS has the following type information: f :: s:1:c_0:cons_f:cons_g:cons_0 -> s:1:c_0:cons_f:cons_g:cons_0 s :: s:1:c_0:cons_f:cons_g:cons_0 -> s:1:c_0:cons_f:cons_g:cons_0 g :: s:1:c_0:cons_f:cons_g:cons_0 -> s:1:c_0:cons_f:cons_g:cons_0 -> s:1:c_0:cons_f:cons_g:cons_0 0' :: s:1:c_0:cons_f:cons_g:cons_0 1 :: s:1:c_0:cons_f:cons_g:cons_0 c_0 :: s:1:c_0:cons_f:cons_g:cons_0 encArg :: s:1:c_0:cons_f:cons_g:cons_0 -> s:1:c_0:cons_f:cons_g:cons_0 cons_f :: s:1:c_0:cons_f:cons_g:cons_0 -> s:1:c_0:cons_f:cons_g:cons_0 cons_g :: s:1:c_0:cons_f:cons_g:cons_0 -> s:1:c_0:cons_f:cons_g:cons_0 -> s:1:c_0:cons_f:cons_g:cons_0 cons_0 :: s:1:c_0:cons_f:cons_g:cons_0 encode_f :: s:1:c_0:cons_f:cons_g:cons_0 -> s:1:c_0:cons_f:cons_g:cons_0 encode_s :: s:1:c_0:cons_f:cons_g:cons_0 -> s:1:c_0:cons_f:cons_g:cons_0 encode_g :: s:1:c_0:cons_f:cons_g:cons_0 -> s:1:c_0:cons_f:cons_g:cons_0 -> s:1:c_0:cons_f:cons_g:cons_0 encode_0 :: s:1:c_0:cons_f:cons_g:cons_0 encode_1 :: s:1:c_0:cons_f:cons_g:cons_0 Rewrite Strategy: INNERMOST ---------------------------------------- (13) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: g_2 f_1 encArg_1 encode_f_1 encode_s_1 encode_g_2 encode_0 encode_1 0' Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_f(v0) -> null_encode_f [0] encode_s(v0) -> null_encode_s [0] encode_g(v0, v1) -> null_encode_g [0] encode_0 -> null_encode_0 [0] encode_1 -> null_encode_1 [0] 0' -> null_0' [0] g(v0, v1) -> null_g [0] f(v0) -> null_f [0] And the following fresh constants: null_encArg, null_encode_f, null_encode_s, null_encode_g, null_encode_0, null_encode_1, null_0', null_g, null_f ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(s(x)) -> f(g(x, x)) [1] 0' -> 1 [1] g(c_0, 1) -> s(0') [1] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(1) -> 1 [0] encArg(cons_f(x_1)) -> f(encArg(x_1)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(cons_0) -> 0' [0] encode_f(x_1) -> f(encArg(x_1)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0' [0] encode_1 -> 1 [0] 0' -> c_0 [0] encArg(v0) -> null_encArg [0] encode_f(v0) -> null_encode_f [0] encode_s(v0) -> null_encode_s [0] encode_g(v0, v1) -> null_encode_g [0] encode_0 -> null_encode_0 [0] encode_1 -> null_encode_1 [0] 0' -> null_0' [0] g(v0, v1) -> null_g [0] f(v0) -> null_f [0] The TRS has the following type information: f :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f s :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f g :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f 0' :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f 1 :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f c_0 :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f encArg :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f cons_f :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f cons_g :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f cons_0 :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f encode_f :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f encode_s :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f encode_g :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f encode_0 :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f encode_1 :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_encArg :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_encode_f :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_encode_s :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_encode_g :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_encode_0 :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_encode_1 :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_0' :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_g :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_f :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (15) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(s(x)) -> f(null_g) [1] 0' -> 1 [1] g(c_0, 1) -> s(0') [1] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(1) -> 1 [0] encArg(cons_f(s(x_1'))) -> f(s(encArg(x_1'))) [0] encArg(cons_f(1)) -> f(1) [0] encArg(cons_f(cons_f(x_1''))) -> f(f(encArg(x_1''))) [0] encArg(cons_f(cons_g(x_11, x_2'))) -> f(g(encArg(x_11), encArg(x_2'))) [0] encArg(cons_f(cons_0)) -> f(0') [0] encArg(cons_f(x_1)) -> f(null_encArg) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(cons_0) -> 0' [0] encode_f(s(x_123)) -> f(s(encArg(x_123))) [0] encode_f(1) -> f(1) [0] encode_f(cons_f(x_124)) -> f(f(encArg(x_124))) [0] encode_f(cons_g(x_125, x_27)) -> f(g(encArg(x_125), encArg(x_27))) [0] encode_f(cons_0) -> f(0') [0] encode_f(x_1) -> f(null_encArg) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0' [0] encode_1 -> 1 [0] 0' -> c_0 [0] encArg(v0) -> null_encArg [0] encode_f(v0) -> null_encode_f [0] encode_s(v0) -> null_encode_s [0] encode_g(v0, v1) -> null_encode_g [0] encode_0 -> null_encode_0 [0] encode_1 -> null_encode_1 [0] 0' -> null_0' [0] g(v0, v1) -> null_g [0] f(v0) -> null_f [0] The TRS has the following type information: f :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f s :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f g :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f 0' :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f 1 :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f c_0 :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f encArg :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f cons_f :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f cons_g :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f cons_0 :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f encode_f :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f encode_s :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f encode_g :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f -> s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f encode_0 :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f encode_1 :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_encArg :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_encode_f :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_encode_s :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_encode_g :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_encode_0 :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_encode_1 :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_0' :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_g :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f null_f :: s:1:c_0:cons_f:cons_g:cons_0:null_encArg:null_encode_f:null_encode_s:null_encode_g:null_encode_0:null_encode_1:null_0':null_g:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (17) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 1 => 0 c_0 => 1 cons_0 => 2 null_encArg => 0 null_encode_f => 0 null_encode_s => 0 null_encode_g => 0 null_encode_0 => 0 null_encode_1 => 0 null_0' => 0 null_g => 0 null_f => 0 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(x_1''))) :|: z = 1 + (1 + x_1''), x_1'' >= 0 encArg(z) -{ 0 }-> f(0') :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1')) :|: z = 1 + (1 + x_1'), x_1' >= 0 encArg(z) -{ 0 }-> 0' :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_0 -{ 0 }-> 0' :|: encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(x_124))) :|: x_124 >= 0, z = 1 + x_124 encode_f(z) -{ 0 }-> f(0') :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: x_1 >= 0, z = x_1 encode_f(z) -{ 0 }-> f(1 + encArg(x_123)) :|: x_123 >= 0, z = 1 + x_123 encode_f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_g(z, z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_g(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 f(z) -{ 1 }-> f(0) :|: x >= 0, z = 1 + x f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 g(z, z') -{ 1 }-> 1 + 0' :|: z = 1, z' = 0 ---------------------------------------- (19) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: 0' -{ 0 }-> 1 :|: 0' -{ 0 }-> 0 :|: 0' -{ 1 }-> 0 :|: g(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 g(z, z') -{ 1 }-> 1 + 0' :|: z = 1, z' = 0 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(x_1''))) :|: z = 1 + (1 + x_1''), x_1'' >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(1 + encArg(x_1')) :|: z = 1 + (1 + x_1'), x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(x_124))) :|: x_124 >= 0, z = 1 + x_124 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: x_1 >= 0, z = x_1 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(1 + encArg(x_123)) :|: x_123 >= 0, z = 1 + x_123 encode_f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_g(z, z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_g(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 f(z) -{ 1 }-> f(0) :|: x >= 0, z = 1 + x f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 ---------------------------------------- (21) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 1 }-> f(0) :|: z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 ---------------------------------------- (23) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_0 } { encode_1 } { f } { g } { 0' } { encArg } { encode_g } { encode_f } { encode_s } ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 1 }-> f(0) :|: z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encode_0}, {encode_1}, {f}, {g}, {0'}, {encArg}, {encode_g}, {encode_f}, {encode_s} ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 1 }-> f(0) :|: z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encode_0}, {encode_1}, {f}, {g}, {0'}, {encArg}, {encode_g}, {encode_f}, {encode_s} ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 1 }-> f(0) :|: z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encode_0}, {encode_1}, {f}, {g}, {0'}, {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: ?, size: O(1) [1] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 1 }-> f(0) :|: z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encode_1}, {f}, {g}, {0'}, {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 1 }-> f(0) :|: z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encode_1}, {f}, {g}, {0'}, {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 1 }-> f(0) :|: z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encode_1}, {f}, {g}, {0'}, {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: ?, size: O(1) [0] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 1 }-> f(0) :|: z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {f}, {g}, {0'}, {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 1 }-> f(0) :|: z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {f}, {g}, {0'}, {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 1 }-> f(0) :|: z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {f}, {g}, {0'}, {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: ?, size: O(1) [0] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 1 }-> f(0) :|: z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {g}, {0'}, {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {g}, {0'}, {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {g}, {0'}, {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: ?, size: O(1) [2] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {0'}, {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {0'}, {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: 0' after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {0'}, {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] 0': runtime: ?, size: O(1) [1] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: 0' after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] 0': runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (55) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] 0': runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encArg}, {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] 0': runtime: O(1) [1], size: O(1) [1] encArg: runtime: ?, size: O(n^1) [2 + z] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 3*z ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> f(g(encArg(x_125), encArg(x_27))) :|: x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] 0': runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [2 + 3*z], size: O(n^1) [2 + z] ---------------------------------------- (61) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ -3 + 3*z }-> s11 :|: s10 >= 0, s10 <= z - 2 + 2, s11 >= 0, s11 <= 0, z - 2 >= 0 encArg(z) -{ -2 + 3*z }-> s14 :|: s12 >= 0, s12 <= z - 2 + 2, s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, z - 2 >= 0 encArg(z) -{ 7 + 3*x_11 + 3*x_2' }-> s24 :|: s21 >= 0, s21 <= x_11 + 2, s22 >= 0, s22 <= x_2' + 2, s23 >= 0, s23 <= 2, s24 >= 0, s24 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 6 + 3*x_1 + 3*x_2 }-> s27 :|: s25 >= 0, s25 <= x_1 + 2, s26 >= 0, s26 <= x_2 + 2, s27 >= 0, s27 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ -1 + 3*z }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 3*z }-> s16 :|: s15 >= 0, s15 <= z - 1 + 2, s16 >= 0, s16 <= 0, z - 1 >= 0 encode_f(z) -{ 1 + 3*z }-> s19 :|: s17 >= 0, s17 <= z - 1 + 2, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, z - 1 >= 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 7 + 3*x_125 + 3*x_27 }-> s31 :|: s28 >= 0, s28 <= x_125 + 2, s29 >= 0, s29 <= x_27 + 2, s30 >= 0, s30 <= 2, s31 >= 0, s31 <= 0, x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 6 + 3*z + 3*z' }-> s34 :|: s32 >= 0, s32 <= z + 2, s33 >= 0, s33 <= z' + 2, s34 >= 0, s34 <= 2, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 2 + 3*z }-> 1 + s20 :|: s20 >= 0, s20 <= z + 2, z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] 0': runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [2 + 3*z], size: O(n^1) [2 + z] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ -3 + 3*z }-> s11 :|: s10 >= 0, s10 <= z - 2 + 2, s11 >= 0, s11 <= 0, z - 2 >= 0 encArg(z) -{ -2 + 3*z }-> s14 :|: s12 >= 0, s12 <= z - 2 + 2, s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, z - 2 >= 0 encArg(z) -{ 7 + 3*x_11 + 3*x_2' }-> s24 :|: s21 >= 0, s21 <= x_11 + 2, s22 >= 0, s22 <= x_2' + 2, s23 >= 0, s23 <= 2, s24 >= 0, s24 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 6 + 3*x_1 + 3*x_2 }-> s27 :|: s25 >= 0, s25 <= x_1 + 2, s26 >= 0, s26 <= x_2 + 2, s27 >= 0, s27 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ -1 + 3*z }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 3*z }-> s16 :|: s15 >= 0, s15 <= z - 1 + 2, s16 >= 0, s16 <= 0, z - 1 >= 0 encode_f(z) -{ 1 + 3*z }-> s19 :|: s17 >= 0, s17 <= z - 1 + 2, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, z - 1 >= 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 7 + 3*x_125 + 3*x_27 }-> s31 :|: s28 >= 0, s28 <= x_125 + 2, s29 >= 0, s29 <= x_27 + 2, s30 >= 0, s30 <= 2, s31 >= 0, s31 <= 0, x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 6 + 3*z + 3*z' }-> s34 :|: s32 >= 0, s32 <= z + 2, s33 >= 0, s33 <= z' + 2, s34 >= 0, s34 <= 2, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 2 + 3*z }-> 1 + s20 :|: s20 >= 0, s20 <= z + 2, z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encode_g}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] 0': runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [2 + 3*z], size: O(n^1) [2 + z] encode_g: runtime: ?, size: O(1) [2] ---------------------------------------- (65) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 6 + 3*z + 3*z' ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ -3 + 3*z }-> s11 :|: s10 >= 0, s10 <= z - 2 + 2, s11 >= 0, s11 <= 0, z - 2 >= 0 encArg(z) -{ -2 + 3*z }-> s14 :|: s12 >= 0, s12 <= z - 2 + 2, s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, z - 2 >= 0 encArg(z) -{ 7 + 3*x_11 + 3*x_2' }-> s24 :|: s21 >= 0, s21 <= x_11 + 2, s22 >= 0, s22 <= x_2' + 2, s23 >= 0, s23 <= 2, s24 >= 0, s24 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 6 + 3*x_1 + 3*x_2 }-> s27 :|: s25 >= 0, s25 <= x_1 + 2, s26 >= 0, s26 <= x_2 + 2, s27 >= 0, s27 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ -1 + 3*z }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 3*z }-> s16 :|: s15 >= 0, s15 <= z - 1 + 2, s16 >= 0, s16 <= 0, z - 1 >= 0 encode_f(z) -{ 1 + 3*z }-> s19 :|: s17 >= 0, s17 <= z - 1 + 2, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, z - 1 >= 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 7 + 3*x_125 + 3*x_27 }-> s31 :|: s28 >= 0, s28 <= x_125 + 2, s29 >= 0, s29 <= x_27 + 2, s30 >= 0, s30 <= 2, s31 >= 0, s31 <= 0, x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 6 + 3*z + 3*z' }-> s34 :|: s32 >= 0, s32 <= z + 2, s33 >= 0, s33 <= z' + 2, s34 >= 0, s34 <= 2, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 2 + 3*z }-> 1 + s20 :|: s20 >= 0, s20 <= z + 2, z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] 0': runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [2 + 3*z], size: O(n^1) [2 + z] encode_g: runtime: O(n^1) [6 + 3*z + 3*z'], size: O(1) [2] ---------------------------------------- (67) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ -3 + 3*z }-> s11 :|: s10 >= 0, s10 <= z - 2 + 2, s11 >= 0, s11 <= 0, z - 2 >= 0 encArg(z) -{ -2 + 3*z }-> s14 :|: s12 >= 0, s12 <= z - 2 + 2, s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, z - 2 >= 0 encArg(z) -{ 7 + 3*x_11 + 3*x_2' }-> s24 :|: s21 >= 0, s21 <= x_11 + 2, s22 >= 0, s22 <= x_2' + 2, s23 >= 0, s23 <= 2, s24 >= 0, s24 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 6 + 3*x_1 + 3*x_2 }-> s27 :|: s25 >= 0, s25 <= x_1 + 2, s26 >= 0, s26 <= x_2 + 2, s27 >= 0, s27 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ -1 + 3*z }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 3*z }-> s16 :|: s15 >= 0, s15 <= z - 1 + 2, s16 >= 0, s16 <= 0, z - 1 >= 0 encode_f(z) -{ 1 + 3*z }-> s19 :|: s17 >= 0, s17 <= z - 1 + 2, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, z - 1 >= 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 7 + 3*x_125 + 3*x_27 }-> s31 :|: s28 >= 0, s28 <= x_125 + 2, s29 >= 0, s29 <= x_27 + 2, s30 >= 0, s30 <= 2, s31 >= 0, s31 <= 0, x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 6 + 3*z + 3*z' }-> s34 :|: s32 >= 0, s32 <= z + 2, s33 >= 0, s33 <= z' + 2, s34 >= 0, s34 <= 2, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 2 + 3*z }-> 1 + s20 :|: s20 >= 0, s20 <= z + 2, z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] 0': runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [2 + 3*z], size: O(n^1) [2 + z] encode_g: runtime: O(n^1) [6 + 3*z + 3*z'], size: O(1) [2] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ -3 + 3*z }-> s11 :|: s10 >= 0, s10 <= z - 2 + 2, s11 >= 0, s11 <= 0, z - 2 >= 0 encArg(z) -{ -2 + 3*z }-> s14 :|: s12 >= 0, s12 <= z - 2 + 2, s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, z - 2 >= 0 encArg(z) -{ 7 + 3*x_11 + 3*x_2' }-> s24 :|: s21 >= 0, s21 <= x_11 + 2, s22 >= 0, s22 <= x_2' + 2, s23 >= 0, s23 <= 2, s24 >= 0, s24 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 6 + 3*x_1 + 3*x_2 }-> s27 :|: s25 >= 0, s25 <= x_1 + 2, s26 >= 0, s26 <= x_2 + 2, s27 >= 0, s27 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ -1 + 3*z }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 3*z }-> s16 :|: s15 >= 0, s15 <= z - 1 + 2, s16 >= 0, s16 <= 0, z - 1 >= 0 encode_f(z) -{ 1 + 3*z }-> s19 :|: s17 >= 0, s17 <= z - 1 + 2, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, z - 1 >= 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 7 + 3*x_125 + 3*x_27 }-> s31 :|: s28 >= 0, s28 <= x_125 + 2, s29 >= 0, s29 <= x_27 + 2, s30 >= 0, s30 <= 2, s31 >= 0, s31 <= 0, x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 6 + 3*z + 3*z' }-> s34 :|: s32 >= 0, s32 <= z + 2, s33 >= 0, s33 <= z' + 2, s34 >= 0, s34 <= 2, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 2 + 3*z }-> 1 + s20 :|: s20 >= 0, s20 <= z + 2, z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] 0': runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [2 + 3*z], size: O(n^1) [2 + z] encode_g: runtime: O(n^1) [6 + 3*z + 3*z'], size: O(1) [2] encode_f: runtime: ?, size: O(1) [0] ---------------------------------------- (71) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + 3*z ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ -3 + 3*z }-> s11 :|: s10 >= 0, s10 <= z - 2 + 2, s11 >= 0, s11 <= 0, z - 2 >= 0 encArg(z) -{ -2 + 3*z }-> s14 :|: s12 >= 0, s12 <= z - 2 + 2, s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, z - 2 >= 0 encArg(z) -{ 7 + 3*x_11 + 3*x_2' }-> s24 :|: s21 >= 0, s21 <= x_11 + 2, s22 >= 0, s22 <= x_2' + 2, s23 >= 0, s23 <= 2, s24 >= 0, s24 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 6 + 3*x_1 + 3*x_2 }-> s27 :|: s25 >= 0, s25 <= x_1 + 2, s26 >= 0, s26 <= x_2 + 2, s27 >= 0, s27 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ -1 + 3*z }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 3*z }-> s16 :|: s15 >= 0, s15 <= z - 1 + 2, s16 >= 0, s16 <= 0, z - 1 >= 0 encode_f(z) -{ 1 + 3*z }-> s19 :|: s17 >= 0, s17 <= z - 1 + 2, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, z - 1 >= 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 7 + 3*x_125 + 3*x_27 }-> s31 :|: s28 >= 0, s28 <= x_125 + 2, s29 >= 0, s29 <= x_27 + 2, s30 >= 0, s30 <= 2, s31 >= 0, s31 <= 0, x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 6 + 3*z + 3*z' }-> s34 :|: s32 >= 0, s32 <= z + 2, s33 >= 0, s33 <= z' + 2, s34 >= 0, s34 <= 2, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 2 + 3*z }-> 1 + s20 :|: s20 >= 0, s20 <= z + 2, z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] 0': runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [2 + 3*z], size: O(n^1) [2 + z] encode_g: runtime: O(n^1) [6 + 3*z + 3*z'], size: O(1) [2] encode_f: runtime: O(n^1) [4 + 3*z], size: O(1) [0] ---------------------------------------- (73) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ -3 + 3*z }-> s11 :|: s10 >= 0, s10 <= z - 2 + 2, s11 >= 0, s11 <= 0, z - 2 >= 0 encArg(z) -{ -2 + 3*z }-> s14 :|: s12 >= 0, s12 <= z - 2 + 2, s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, z - 2 >= 0 encArg(z) -{ 7 + 3*x_11 + 3*x_2' }-> s24 :|: s21 >= 0, s21 <= x_11 + 2, s22 >= 0, s22 <= x_2' + 2, s23 >= 0, s23 <= 2, s24 >= 0, s24 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 6 + 3*x_1 + 3*x_2 }-> s27 :|: s25 >= 0, s25 <= x_1 + 2, s26 >= 0, s26 <= x_2 + 2, s27 >= 0, s27 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ -1 + 3*z }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 3*z }-> s16 :|: s15 >= 0, s15 <= z - 1 + 2, s16 >= 0, s16 <= 0, z - 1 >= 0 encode_f(z) -{ 1 + 3*z }-> s19 :|: s17 >= 0, s17 <= z - 1 + 2, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, z - 1 >= 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 7 + 3*x_125 + 3*x_27 }-> s31 :|: s28 >= 0, s28 <= x_125 + 2, s29 >= 0, s29 <= x_27 + 2, s30 >= 0, s30 <= 2, s31 >= 0, s31 <= 0, x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 6 + 3*z + 3*z' }-> s34 :|: s32 >= 0, s32 <= z + 2, s33 >= 0, s33 <= z' + 2, s34 >= 0, s34 <= 2, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 2 + 3*z }-> 1 + s20 :|: s20 >= 0, s20 <= z + 2, z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] 0': runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [2 + 3*z], size: O(n^1) [2 + z] encode_g: runtime: O(n^1) [6 + 3*z + 3*z'], size: O(1) [2] encode_f: runtime: O(n^1) [4 + 3*z], size: O(1) [0] ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + z ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ -3 + 3*z }-> s11 :|: s10 >= 0, s10 <= z - 2 + 2, s11 >= 0, s11 <= 0, z - 2 >= 0 encArg(z) -{ -2 + 3*z }-> s14 :|: s12 >= 0, s12 <= z - 2 + 2, s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, z - 2 >= 0 encArg(z) -{ 7 + 3*x_11 + 3*x_2' }-> s24 :|: s21 >= 0, s21 <= x_11 + 2, s22 >= 0, s22 <= x_2' + 2, s23 >= 0, s23 <= 2, s24 >= 0, s24 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 6 + 3*x_1 + 3*x_2 }-> s27 :|: s25 >= 0, s25 <= x_1 + 2, s26 >= 0, s26 <= x_2 + 2, s27 >= 0, s27 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ -1 + 3*z }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 3*z }-> s16 :|: s15 >= 0, s15 <= z - 1 + 2, s16 >= 0, s16 <= 0, z - 1 >= 0 encode_f(z) -{ 1 + 3*z }-> s19 :|: s17 >= 0, s17 <= z - 1 + 2, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, z - 1 >= 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 7 + 3*x_125 + 3*x_27 }-> s31 :|: s28 >= 0, s28 <= x_125 + 2, s29 >= 0, s29 <= x_27 + 2, s30 >= 0, s30 <= 2, s31 >= 0, s31 <= 0, x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 6 + 3*z + 3*z' }-> s34 :|: s32 >= 0, s32 <= z + 2, s33 >= 0, s33 <= z' + 2, s34 >= 0, s34 <= 2, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 2 + 3*z }-> 1 + s20 :|: s20 >= 0, s20 <= z + 2, z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] 0': runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [2 + 3*z], size: O(n^1) [2 + z] encode_g: runtime: O(n^1) [6 + 3*z + 3*z'], size: O(1) [2] encode_f: runtime: O(n^1) [4 + 3*z], size: O(1) [0] encode_s: runtime: ?, size: O(n^1) [3 + z] ---------------------------------------- (77) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 3*z ---------------------------------------- (78) Obligation: Complexity RNTS consisting of the following rules: 0' -{ 0 }-> 1 :|: 0' -{ 1 }-> 0 :|: 0' -{ 0 }-> 0 :|: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ -3 + 3*z }-> s11 :|: s10 >= 0, s10 <= z - 2 + 2, s11 >= 0, s11 <= 0, z - 2 >= 0 encArg(z) -{ -2 + 3*z }-> s14 :|: s12 >= 0, s12 <= z - 2 + 2, s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, z - 2 >= 0 encArg(z) -{ 7 + 3*x_11 + 3*x_2' }-> s24 :|: s21 >= 0, s21 <= x_11 + 2, s22 >= 0, s22 <= x_2' + 2, s23 >= 0, s23 <= 2, s24 >= 0, s24 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 6 + 3*x_1 + 3*x_2 }-> s27 :|: s25 >= 0, s25 <= x_1 + 2, s26 >= 0, s26 <= x_2 + 2, s27 >= 0, s27 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z = 1 + 2 encArg(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 1 + 2 encArg(z) -{ 2 }-> s5 :|: s5 >= 0, s5 <= 0, z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ -1 + 3*z }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 1 :|: encode_0 -{ 0 }-> 0 :|: encode_0 -{ 1 }-> 0 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z = 0 encode_f(z) -{ 3*z }-> s16 :|: s15 >= 0, s15 <= z - 1 + 2, s16 >= 0, s16 <= 0, z - 1 >= 0 encode_f(z) -{ 1 + 3*z }-> s19 :|: s17 >= 0, s17 <= z - 1 + 2, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, z - 1 >= 0 encode_f(z) -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z >= 0 encode_f(z) -{ 7 + 3*x_125 + 3*x_27 }-> s31 :|: s28 >= 0, s28 <= x_125 + 2, s29 >= 0, s29 <= x_27 + 2, s30 >= 0, s30 <= 2, s31 >= 0, s31 <= 0, x_125 >= 0, x_27 >= 0, z = 1 + x_125 + x_27 encode_f(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z = 2 encode_f(z) -{ 1 }-> s7 :|: s7 >= 0, s7 <= 0, z = 2 encode_f(z) -{ 2 }-> s8 :|: s8 >= 0, s8 <= 0, z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z, z') -{ 6 + 3*z + 3*z' }-> s34 :|: s32 >= 0, s32 <= z + 2, s33 >= 0, s33 <= z' + 2, s34 >= 0, s34 <= 2, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 2 + 3*z }-> 1 + s20 :|: s20 >= 0, s20 <= z + 2, z >= 0 f(z) -{ 2 }-> s :|: s >= 0, s <= 0, z - 1 >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> 1 + 1 :|: z = 1, z' = 0 g(z, z') -{ 1 }-> 1 + 0 :|: z = 1, z' = 0 g(z, z') -{ 2 }-> 1 + 0 :|: z = 1, z' = 0 Function symbols to be analyzed: Previous analysis results are: encode_0: runtime: O(1) [1], size: O(1) [1] encode_1: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] g: runtime: O(1) [2], size: O(1) [2] 0': runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [2 + 3*z], size: O(n^1) [2 + z] encode_g: runtime: O(n^1) [6 + 3*z + 3*z'], size: O(1) [2] encode_f: runtime: O(n^1) [4 + 3*z], size: O(1) [0] encode_s: runtime: O(n^1) [2 + 3*z], size: O(n^1) [3 + z] ---------------------------------------- (79) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (80) BOUNDS(1, n^1)