/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 42 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 88 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 138 ms] (18) CdtProblem (19) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CdtProblem (21) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CdtProblem (23) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CdtProblem (25) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CdtProblem (27) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CdtProblem (29) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CdtProblem (31) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 144 ms] (32) CdtProblem (33) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (34) BOUNDS(1, 1) (35) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (36) CpxRelTRS (37) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (38) typed CpxTrs (39) OrderProof [LOWER BOUND(ID), 0 ms] (40) typed CpxTrs (41) RewriteLemmaProof [LOWER BOUND(ID), 409 ms] (42) BEST (43) proven lower bound (44) LowerBoundPropagationProof [FINISHED, 0 ms] (45) BOUNDS(n^1, INF) (46) typed CpxTrs (47) RewriteLemmaProof [LOWER BOUND(ID), 32 ms] (48) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(x)) -> f(x) f(s(x)) -> f(x) g(s(0)) -> g(f(s(0))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(x)) -> f(x) f(s(x)) -> f(x) g(s(0)) -> g(f(s(0))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(x)) -> f(x) f(s(x)) -> f(x) g(s(0)) -> g(f(s(0))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_s(z0) -> s(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 f(f(z0)) -> f(z0) f(s(z0)) -> f(z0) g(s(0)) -> g(f(s(0))) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(0) -> c1 ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c4(F(encArg(z0)), ENCARG(z0)) ENCODE_S(z0) -> c5(ENCARG(z0)) ENCODE_G(z0) -> c6(G(encArg(z0)), ENCARG(z0)) ENCODE_0 -> c7 F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) S tuples: F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) K tuples:none Defined Rule Symbols: f_1, g_1, encArg_1, encode_f_1, encode_s_1, encode_g_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_S_1, ENCODE_G_1, ENCODE_0, F_1, G_1 Compound Symbols: c_1, c1, c2_2, c3_2, c4_2, c5_1, c6_2, c7, c8_1, c9_1, c10_2 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: ENCODE_S(z0) -> c5(ENCARG(z0)) Removed 2 trailing nodes: ENCARG(0) -> c1 ENCODE_0 -> c7 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_s(z0) -> s(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 f(f(z0)) -> f(z0) f(s(z0)) -> f(z0) g(s(0)) -> g(f(s(0))) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c4(F(encArg(z0)), ENCARG(z0)) ENCODE_G(z0) -> c6(G(encArg(z0)), ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) S tuples: F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) K tuples:none Defined Rule Symbols: f_1, g_1, encArg_1, encode_f_1, encode_s_1, encode_g_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_G_1, F_1, G_1 Compound Symbols: c_1, c2_2, c3_2, c4_2, c6_2, c8_1, c9_1, c10_2 ---------------------------------------- (9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_s(z0) -> s(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 f(f(z0)) -> f(z0) f(s(z0)) -> f(z0) g(s(0)) -> g(f(s(0))) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) ENCODE_F(z0) -> c1(F(encArg(z0))) ENCODE_F(z0) -> c1(ENCARG(z0)) ENCODE_G(z0) -> c1(G(encArg(z0))) ENCODE_G(z0) -> c1(ENCARG(z0)) S tuples: F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) K tuples:none Defined Rule Symbols: f_1, g_1, encArg_1, encode_f_1, encode_s_1, encode_g_1, encode_0 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c_1, c2_2, c3_2, c8_1, c9_1, c10_2, c1_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_F(z0) -> c1(ENCARG(z0)) ENCODE_G(z0) -> c1(ENCARG(z0)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_s(z0) -> s(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 f(f(z0)) -> f(z0) f(s(z0)) -> f(z0) g(s(0)) -> g(f(s(0))) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) ENCODE_F(z0) -> c1(F(encArg(z0))) ENCODE_G(z0) -> c1(G(encArg(z0))) S tuples: F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) K tuples:none Defined Rule Symbols: f_1, g_1, encArg_1, encode_f_1, encode_s_1, encode_g_1, encode_0 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c_1, c2_2, c3_2, c8_1, c9_1, c10_2, c1_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0) -> f(encArg(z0)) encode_s(z0) -> s(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(f(z0)) -> f(z0) f(s(z0)) -> f(z0) g(s(0)) -> g(f(s(0))) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) ENCODE_F(z0) -> c1(F(encArg(z0))) ENCODE_G(z0) -> c1(G(encArg(z0))) S tuples: F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) K tuples:none Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c_1, c2_2, c3_2, c8_1, c9_1, c10_2, c1_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(s(0)) -> c10(G(f(s(0))), F(s(0))) We considered the (Usable) Rules: encArg(s(z0)) -> s(encArg(z0)) g(s(0)) -> g(f(s(0))) f(f(z0)) -> f(z0) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(s(z0)) -> f(z0) encArg(0) -> 0 And the Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) ENCODE_F(z0) -> c1(F(encArg(z0))) ENCODE_G(z0) -> c1(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1)) = 0 POL(ENCODE_G(x_1)) = [1] POL(F(x_1)) = 0 POL(G(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c8(x_1)) = x_1 POL(c9(x_1)) = x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] POL(f(x_1)) = 0 POL(g(x_1)) = [1] POL(s(x_1)) = x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(f(z0)) -> f(z0) f(s(z0)) -> f(z0) g(s(0)) -> g(f(s(0))) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) ENCODE_F(z0) -> c1(F(encArg(z0))) ENCODE_G(z0) -> c1(G(encArg(z0))) S tuples: F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) K tuples: G(s(0)) -> c10(G(f(s(0))), F(s(0))) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c_1, c2_2, c3_2, c8_1, c9_1, c10_2, c1_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(f(z0)) -> c8(F(z0)) We considered the (Usable) Rules: encArg(s(z0)) -> s(encArg(z0)) g(s(0)) -> g(f(s(0))) f(f(z0)) -> f(z0) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(s(z0)) -> f(z0) encArg(0) -> 0 And the Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) ENCODE_F(z0) -> c1(F(encArg(z0))) ENCODE_G(z0) -> c1(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_F(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_G(x_1)) = [1] + [2]x_1^2 POL(F(x_1)) = [2]x_1 POL(G(x_1)) = 0 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c8(x_1)) = x_1 POL(c9(x_1)) = x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = 0 POL(s(x_1)) = x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(f(z0)) -> f(z0) f(s(z0)) -> f(z0) g(s(0)) -> g(f(s(0))) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) ENCODE_F(z0) -> c1(F(encArg(z0))) ENCODE_G(z0) -> c1(G(encArg(z0))) S tuples: F(s(z0)) -> c9(F(z0)) K tuples: G(s(0)) -> c10(G(f(s(0))), F(s(0))) F(f(z0)) -> c8(F(z0)) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c_1, c2_2, c3_2, c8_1, c9_1, c10_2, c1_1 ---------------------------------------- (19) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) by ENCARG(cons_f(s(z0))) -> c2(F(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_f(0)) -> c2(F(0), ENCARG(0)) ENCARG(cons_f(cons_f(z0))) -> c2(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_g(z0))) -> c2(F(g(encArg(z0))), ENCARG(cons_g(z0))) ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(f(z0)) -> f(z0) f(s(z0)) -> f(z0) g(s(0)) -> g(f(s(0))) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) ENCODE_F(z0) -> c1(F(encArg(z0))) ENCODE_G(z0) -> c1(G(encArg(z0))) ENCARG(cons_f(s(z0))) -> c2(F(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_f(0)) -> c2(F(0), ENCARG(0)) ENCARG(cons_f(cons_f(z0))) -> c2(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_g(z0))) -> c2(F(g(encArg(z0))), ENCARG(cons_g(z0))) S tuples: F(s(z0)) -> c9(F(z0)) K tuples: G(s(0)) -> c10(G(f(s(0))), F(s(0))) F(f(z0)) -> c8(F(z0)) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c_1, c3_2, c8_1, c9_1, c10_2, c1_1, c2_2 ---------------------------------------- (21) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: ENCARG(cons_f(0)) -> c2(F(0), ENCARG(0)) ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(f(z0)) -> f(z0) f(s(z0)) -> f(z0) g(s(0)) -> g(f(s(0))) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) ENCODE_F(z0) -> c1(F(encArg(z0))) ENCODE_G(z0) -> c1(G(encArg(z0))) ENCARG(cons_f(s(z0))) -> c2(F(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_f(cons_f(z0))) -> c2(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_g(z0))) -> c2(F(g(encArg(z0))), ENCARG(cons_g(z0))) S tuples: F(s(z0)) -> c9(F(z0)) K tuples: G(s(0)) -> c10(G(f(s(0))), F(s(0))) F(f(z0)) -> c8(F(z0)) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c_1, c3_2, c8_1, c9_1, c10_2, c1_1, c2_2 ---------------------------------------- (23) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) by ENCARG(cons_g(s(z0))) -> c3(G(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_g(0)) -> c3(G(0), ENCARG(0)) ENCARG(cons_g(cons_f(z0))) -> c3(G(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_g(cons_g(z0))) -> c3(G(g(encArg(z0))), ENCARG(cons_g(z0))) ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(f(z0)) -> f(z0) f(s(z0)) -> f(z0) g(s(0)) -> g(f(s(0))) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) ENCODE_F(z0) -> c1(F(encArg(z0))) ENCODE_G(z0) -> c1(G(encArg(z0))) ENCARG(cons_f(s(z0))) -> c2(F(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_f(cons_f(z0))) -> c2(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_g(z0))) -> c2(F(g(encArg(z0))), ENCARG(cons_g(z0))) ENCARG(cons_g(s(z0))) -> c3(G(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_g(0)) -> c3(G(0), ENCARG(0)) ENCARG(cons_g(cons_f(z0))) -> c3(G(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_g(cons_g(z0))) -> c3(G(g(encArg(z0))), ENCARG(cons_g(z0))) S tuples: F(s(z0)) -> c9(F(z0)) K tuples: G(s(0)) -> c10(G(f(s(0))), F(s(0))) F(f(z0)) -> c8(F(z0)) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c_1, c8_1, c9_1, c10_2, c1_1, c2_2, c3_2 ---------------------------------------- (25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: ENCARG(cons_g(0)) -> c3(G(0), ENCARG(0)) ---------------------------------------- (26) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(f(z0)) -> f(z0) f(s(z0)) -> f(z0) g(s(0)) -> g(f(s(0))) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) G(s(0)) -> c10(G(f(s(0))), F(s(0))) ENCODE_F(z0) -> c1(F(encArg(z0))) ENCODE_G(z0) -> c1(G(encArg(z0))) ENCARG(cons_f(s(z0))) -> c2(F(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_f(cons_f(z0))) -> c2(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_g(z0))) -> c2(F(g(encArg(z0))), ENCARG(cons_g(z0))) ENCARG(cons_g(s(z0))) -> c3(G(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_g(cons_f(z0))) -> c3(G(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_g(cons_g(z0))) -> c3(G(g(encArg(z0))), ENCARG(cons_g(z0))) S tuples: F(s(z0)) -> c9(F(z0)) K tuples: G(s(0)) -> c10(G(f(s(0))), F(s(0))) F(f(z0)) -> c8(F(z0)) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c_1, c8_1, c9_1, c10_2, c1_1, c2_2, c3_2 ---------------------------------------- (27) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace G(s(0)) -> c10(G(f(s(0))), F(s(0))) by G(s(0)) -> c10(G(f(0)), F(s(0))) ---------------------------------------- (28) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(f(z0)) -> f(z0) f(s(z0)) -> f(z0) g(s(0)) -> g(f(s(0))) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) ENCODE_F(z0) -> c1(F(encArg(z0))) ENCODE_G(z0) -> c1(G(encArg(z0))) ENCARG(cons_f(s(z0))) -> c2(F(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_f(cons_f(z0))) -> c2(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_g(z0))) -> c2(F(g(encArg(z0))), ENCARG(cons_g(z0))) ENCARG(cons_g(s(z0))) -> c3(G(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_g(cons_f(z0))) -> c3(G(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_g(cons_g(z0))) -> c3(G(g(encArg(z0))), ENCARG(cons_g(z0))) G(s(0)) -> c10(G(f(0)), F(s(0))) S tuples: F(s(z0)) -> c9(F(z0)) K tuples: G(s(0)) -> c10(G(f(s(0))), F(s(0))) F(f(z0)) -> c8(F(z0)) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, ENCODE_F_1, ENCODE_G_1, G_1 Compound Symbols: c_1, c8_1, c9_1, c1_1, c2_2, c3_2, c10_2 ---------------------------------------- (29) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (30) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(f(z0)) -> f(z0) f(s(z0)) -> f(z0) g(s(0)) -> g(f(s(0))) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) ENCODE_F(z0) -> c1(F(encArg(z0))) ENCODE_G(z0) -> c1(G(encArg(z0))) ENCARG(cons_f(s(z0))) -> c2(F(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_f(cons_f(z0))) -> c2(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_g(z0))) -> c2(F(g(encArg(z0))), ENCARG(cons_g(z0))) ENCARG(cons_g(s(z0))) -> c3(G(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_g(cons_f(z0))) -> c3(G(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_g(cons_g(z0))) -> c3(G(g(encArg(z0))), ENCARG(cons_g(z0))) G(s(0)) -> c10(F(s(0))) S tuples: F(s(z0)) -> c9(F(z0)) K tuples: G(s(0)) -> c10(G(f(s(0))), F(s(0))) F(f(z0)) -> c8(F(z0)) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, ENCODE_F_1, ENCODE_G_1, G_1 Compound Symbols: c_1, c8_1, c9_1, c1_1, c2_2, c3_2, c10_1 ---------------------------------------- (31) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(s(z0)) -> c9(F(z0)) We considered the (Usable) Rules: encArg(s(z0)) -> s(encArg(z0)) g(s(0)) -> g(f(s(0))) f(f(z0)) -> f(z0) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(s(z0)) -> f(z0) encArg(0) -> 0 And the Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) ENCODE_F(z0) -> c1(F(encArg(z0))) ENCODE_G(z0) -> c1(G(encArg(z0))) ENCARG(cons_f(s(z0))) -> c2(F(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_f(cons_f(z0))) -> c2(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_g(z0))) -> c2(F(g(encArg(z0))), ENCARG(cons_g(z0))) ENCARG(cons_g(s(z0))) -> c3(G(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_g(cons_f(z0))) -> c3(G(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_g(cons_g(z0))) -> c3(G(g(encArg(z0))), ENCARG(cons_g(z0))) G(s(0)) -> c10(F(s(0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_F(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_G(x_1)) = [2] + [2]x_1 + x_1^2 POL(F(x_1)) = x_1 POL(G(x_1)) = [2] POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c8(x_1)) = x_1 POL(c9(x_1)) = x_1 POL(cons_f(x_1)) = [2] + x_1 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = [2]x_1 POL(f(x_1)) = x_1 POL(g(x_1)) = [2] POL(s(x_1)) = [1] + x_1 ---------------------------------------- (32) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(f(z0)) -> f(z0) f(s(z0)) -> f(z0) g(s(0)) -> g(f(s(0))) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) ENCODE_F(z0) -> c1(F(encArg(z0))) ENCODE_G(z0) -> c1(G(encArg(z0))) ENCARG(cons_f(s(z0))) -> c2(F(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_f(cons_f(z0))) -> c2(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_g(z0))) -> c2(F(g(encArg(z0))), ENCARG(cons_g(z0))) ENCARG(cons_g(s(z0))) -> c3(G(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_g(cons_f(z0))) -> c3(G(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_g(cons_g(z0))) -> c3(G(g(encArg(z0))), ENCARG(cons_g(z0))) G(s(0)) -> c10(F(s(0))) S tuples:none K tuples: G(s(0)) -> c10(G(f(s(0))), F(s(0))) F(f(z0)) -> c8(F(z0)) F(s(z0)) -> c9(F(z0)) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, ENCODE_F_1, ENCODE_G_1, G_1 Compound Symbols: c_1, c8_1, c9_1, c1_1, c2_2, c3_2, c10_1 ---------------------------------------- (33) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (34) BOUNDS(1, 1) ---------------------------------------- (35) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (36) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(f(x)) -> f(x) f(s(x)) -> f(x) g(s(0')) -> g(f(s(0'))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0' Rewrite Strategy: INNERMOST ---------------------------------------- (37) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (38) Obligation: Innermost TRS: Rules: f(f(x)) -> f(x) f(s(x)) -> f(x) g(s(0')) -> g(f(s(0'))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0' Types: f :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g s :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g g :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g 0' :: s:0':cons_f:cons_g encArg :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g cons_f :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g cons_g :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_f :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_s :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_g :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_0 :: s:0':cons_f:cons_g hole_s:0':cons_f:cons_g1_2 :: s:0':cons_f:cons_g gen_s:0':cons_f:cons_g2_2 :: Nat -> s:0':cons_f:cons_g ---------------------------------------- (39) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, g, encArg They will be analysed ascendingly in the following order: f < g f < encArg g < encArg ---------------------------------------- (40) Obligation: Innermost TRS: Rules: f(f(x)) -> f(x) f(s(x)) -> f(x) g(s(0')) -> g(f(s(0'))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0' Types: f :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g s :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g g :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g 0' :: s:0':cons_f:cons_g encArg :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g cons_f :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g cons_g :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_f :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_s :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_g :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_0 :: s:0':cons_f:cons_g hole_s:0':cons_f:cons_g1_2 :: s:0':cons_f:cons_g gen_s:0':cons_f:cons_g2_2 :: Nat -> s:0':cons_f:cons_g Generator Equations: gen_s:0':cons_f:cons_g2_2(0) <=> 0' gen_s:0':cons_f:cons_g2_2(+(x, 1)) <=> s(gen_s:0':cons_f:cons_g2_2(x)) The following defined symbols remain to be analysed: f, g, encArg They will be analysed ascendingly in the following order: f < g f < encArg g < encArg ---------------------------------------- (41) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_s:0':cons_f:cons_g2_2(+(1, n4_2))) -> *3_2, rt in Omega(n4_2) Induction Base: f(gen_s:0':cons_f:cons_g2_2(+(1, 0))) Induction Step: f(gen_s:0':cons_f:cons_g2_2(+(1, +(n4_2, 1)))) ->_R^Omega(1) f(gen_s:0':cons_f:cons_g2_2(+(1, n4_2))) ->_IH *3_2 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (42) Complex Obligation (BEST) ---------------------------------------- (43) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: f(f(x)) -> f(x) f(s(x)) -> f(x) g(s(0')) -> g(f(s(0'))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0' Types: f :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g s :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g g :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g 0' :: s:0':cons_f:cons_g encArg :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g cons_f :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g cons_g :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_f :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_s :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_g :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_0 :: s:0':cons_f:cons_g hole_s:0':cons_f:cons_g1_2 :: s:0':cons_f:cons_g gen_s:0':cons_f:cons_g2_2 :: Nat -> s:0':cons_f:cons_g Generator Equations: gen_s:0':cons_f:cons_g2_2(0) <=> 0' gen_s:0':cons_f:cons_g2_2(+(x, 1)) <=> s(gen_s:0':cons_f:cons_g2_2(x)) The following defined symbols remain to be analysed: f, g, encArg They will be analysed ascendingly in the following order: f < g f < encArg g < encArg ---------------------------------------- (44) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (45) BOUNDS(n^1, INF) ---------------------------------------- (46) Obligation: Innermost TRS: Rules: f(f(x)) -> f(x) f(s(x)) -> f(x) g(s(0')) -> g(f(s(0'))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0' Types: f :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g s :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g g :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g 0' :: s:0':cons_f:cons_g encArg :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g cons_f :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g cons_g :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_f :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_s :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_g :: s:0':cons_f:cons_g -> s:0':cons_f:cons_g encode_0 :: s:0':cons_f:cons_g hole_s:0':cons_f:cons_g1_2 :: s:0':cons_f:cons_g gen_s:0':cons_f:cons_g2_2 :: Nat -> s:0':cons_f:cons_g Lemmas: f(gen_s:0':cons_f:cons_g2_2(+(1, n4_2))) -> *3_2, rt in Omega(n4_2) Generator Equations: gen_s:0':cons_f:cons_g2_2(0) <=> 0' gen_s:0':cons_f:cons_g2_2(+(x, 1)) <=> s(gen_s:0':cons_f:cons_g2_2(x)) The following defined symbols remain to be analysed: g, encArg They will be analysed ascendingly in the following order: g < encArg ---------------------------------------- (47) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_s:0':cons_f:cons_g2_2(n361_2)) -> gen_s:0':cons_f:cons_g2_2(n361_2), rt in Omega(0) Induction Base: encArg(gen_s:0':cons_f:cons_g2_2(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_s:0':cons_f:cons_g2_2(+(n361_2, 1))) ->_R^Omega(0) s(encArg(gen_s:0':cons_f:cons_g2_2(n361_2))) ->_IH s(gen_s:0':cons_f:cons_g2_2(c362_2)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (48) BOUNDS(1, INF)