/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 190 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 5 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 77 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 16 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 150 ms] (22) CdtProblem (23) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (24) BOUNDS(1, 1) (25) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CpxRelTRS (27) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (28) typed CpxTrs (29) OrderProof [LOWER BOUND(ID), 0 ms] (30) typed CpxTrs (31) RewriteLemmaProof [LOWER BOUND(ID), 254 ms] (32) BEST (33) proven lower bound (34) LowerBoundPropagationProof [FINISHED, 0 ms] (35) BOUNDS(n^1, INF) (36) typed CpxTrs (37) RewriteLemmaProof [LOWER BOUND(ID), 70 ms] (38) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(g(x), s(0), y) -> f(y, y, g(x)) g(s(x)) -> s(g(x)) g(0) -> 0 S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(g(x), s(0), y) -> f(y, y, g(x)) g(s(x)) -> s(g(x)) g(0) -> 0 The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(g(x), s(0), y) -> f(y, y, g(x)) g(s(x)) -> s(g(x)) g(0) -> 0 The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_g(z0) -> g(encArg(z0)) encode_s(z0) -> s(encArg(z0)) encode_0 -> 0 f(g(z0), s(0), z1) -> f(z1, z1, g(z0)) g(s(z0)) -> s(g(z0)) g(0) -> 0 Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(0) -> c1 ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0, z1, z2) -> c4(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_G(z0) -> c5(G(encArg(z0)), ENCARG(z0)) ENCODE_S(z0) -> c6(ENCARG(z0)) ENCODE_0 -> c7 F(g(z0), s(0), z1) -> c8(F(z1, z1, g(z0)), G(z0)) G(s(z0)) -> c9(G(z0)) G(0) -> c10 S tuples: F(g(z0), s(0), z1) -> c8(F(z1, z1, g(z0)), G(z0)) G(s(z0)) -> c9(G(z0)) G(0) -> c10 K tuples:none Defined Rule Symbols: f_3, g_1, encArg_1, encode_f_3, encode_g_1, encode_s_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_F_3, ENCODE_G_1, ENCODE_S_1, ENCODE_0, F_3, G_1 Compound Symbols: c_1, c1, c2_4, c3_2, c4_4, c5_2, c6_1, c7, c8_2, c9_1, c10 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: ENCODE_S(z0) -> c6(ENCARG(z0)) Removed 2 trailing nodes: ENCARG(0) -> c1 ENCODE_0 -> c7 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_g(z0) -> g(encArg(z0)) encode_s(z0) -> s(encArg(z0)) encode_0 -> 0 f(g(z0), s(0), z1) -> f(z1, z1, g(z0)) g(s(z0)) -> s(g(z0)) g(0) -> 0 Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0, z1, z2) -> c4(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_G(z0) -> c5(G(encArg(z0)), ENCARG(z0)) F(g(z0), s(0), z1) -> c8(F(z1, z1, g(z0)), G(z0)) G(s(z0)) -> c9(G(z0)) G(0) -> c10 S tuples: F(g(z0), s(0), z1) -> c8(F(z1, z1, g(z0)), G(z0)) G(s(z0)) -> c9(G(z0)) G(0) -> c10 K tuples:none Defined Rule Symbols: f_3, g_1, encArg_1, encode_f_3, encode_g_1, encode_s_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_F_3, ENCODE_G_1, F_3, G_1 Compound Symbols: c_1, c2_4, c3_2, c4_4, c5_2, c8_2, c9_1, c10 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_g(z0) -> g(encArg(z0)) encode_s(z0) -> s(encArg(z0)) encode_0 -> 0 f(g(z0), s(0), z1) -> f(z1, z1, g(z0)) g(s(z0)) -> s(g(z0)) g(0) -> 0 Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0, z1, z2) -> c4(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_G(z0) -> c5(G(encArg(z0)), ENCARG(z0)) G(s(z0)) -> c9(G(z0)) G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) S tuples: G(s(z0)) -> c9(G(z0)) G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) K tuples:none Defined Rule Symbols: f_3, g_1, encArg_1, encode_f_3, encode_g_1, encode_s_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_F_3, ENCODE_G_1, G_1, F_3 Compound Symbols: c_1, c2_4, c3_2, c4_4, c5_2, c9_1, c10, c8_1 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_g(z0) -> g(encArg(z0)) encode_s(z0) -> s(encArg(z0)) encode_0 -> 0 f(g(z0), s(0), z1) -> f(z1, z1, g(z0)) g(s(z0)) -> s(g(z0)) g(0) -> 0 Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(s(z0)) -> c9(G(z0)) G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_F(z0, z1, z2) -> c1(ENCARG(z0)) ENCODE_F(z0, z1, z2) -> c1(ENCARG(z1)) ENCODE_F(z0, z1, z2) -> c1(ENCARG(z2)) ENCODE_G(z0) -> c1(G(encArg(z0))) ENCODE_G(z0) -> c1(ENCARG(z0)) S tuples: G(s(z0)) -> c9(G(z0)) G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) K tuples:none Defined Rule Symbols: f_3, g_1, encArg_1, encode_f_3, encode_g_1, encode_s_1, encode_0 Defined Pair Symbols: ENCARG_1, G_1, F_3, ENCODE_F_3, ENCODE_G_1 Compound Symbols: c_1, c2_4, c3_2, c9_1, c10, c8_1, c1_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 4 leading nodes: ENCODE_F(z0, z1, z2) -> c1(ENCARG(z0)) ENCODE_F(z0, z1, z2) -> c1(ENCARG(z1)) ENCODE_F(z0, z1, z2) -> c1(ENCARG(z2)) ENCODE_G(z0) -> c1(ENCARG(z0)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_g(z0) -> g(encArg(z0)) encode_s(z0) -> s(encArg(z0)) encode_0 -> 0 f(g(z0), s(0), z1) -> f(z1, z1, g(z0)) g(s(z0)) -> s(g(z0)) g(0) -> 0 Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(s(z0)) -> c9(G(z0)) G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0) -> c1(G(encArg(z0))) S tuples: G(s(z0)) -> c9(G(z0)) G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) K tuples:none Defined Rule Symbols: f_3, g_1, encArg_1, encode_f_3, encode_g_1, encode_s_1, encode_0 Defined Pair Symbols: ENCARG_1, G_1, F_3, ENCODE_F_3, ENCODE_G_1 Compound Symbols: c_1, c2_4, c3_2, c9_1, c10, c8_1, c1_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_g(z0) -> g(encArg(z0)) encode_s(z0) -> s(encArg(z0)) encode_0 -> 0 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0)) -> g(encArg(z0)) f(g(z0), s(0), z1) -> f(z1, z1, g(z0)) g(s(z0)) -> s(g(z0)) g(0) -> 0 Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(s(z0)) -> c9(G(z0)) G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0) -> c1(G(encArg(z0))) S tuples: G(s(z0)) -> c9(G(z0)) G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) K tuples:none Defined Rule Symbols: encArg_1, f_3, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_3, ENCODE_F_3, ENCODE_G_1 Compound Symbols: c_1, c2_4, c3_2, c9_1, c10, c8_1, c1_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(0) -> c10 We considered the (Usable) Rules:none And the Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(s(z0)) -> c9(G(z0)) G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0) -> c1(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2, x_3)) = [1] + x_1 + x_3 POL(ENCODE_G(x_1)) = [1] + x_1 POL(F(x_1, x_2, x_3)) = [1] POL(G(x_1)) = [1] POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10) = 0 POL(c2(x_1, x_2, x_3, x_4)) = x_1 + x_2 + x_3 + x_4 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c8(x_1)) = x_1 POL(c9(x_1)) = x_1 POL(cons_f(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1, x_2, x_3)) = x_1 + x_3 POL(g(x_1)) = [1] + x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0)) -> g(encArg(z0)) f(g(z0), s(0), z1) -> f(z1, z1, g(z0)) g(s(z0)) -> s(g(z0)) g(0) -> 0 Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(s(z0)) -> c9(G(z0)) G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0) -> c1(G(encArg(z0))) S tuples: G(s(z0)) -> c9(G(z0)) F(g(z0), s(0), z1) -> c8(G(z0)) K tuples: G(0) -> c10 Defined Rule Symbols: encArg_1, f_3, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_3, ENCODE_F_3, ENCODE_G_1 Compound Symbols: c_1, c2_4, c3_2, c9_1, c10, c8_1, c1_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(g(z0), s(0), z1) -> c8(G(z0)) We considered the (Usable) Rules:none And the Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(s(z0)) -> c9(G(z0)) G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0) -> c1(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2, x_3)) = [1] + x_1 POL(ENCODE_G(x_1)) = 0 POL(F(x_1, x_2, x_3)) = [1] POL(G(x_1)) = 0 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10) = 0 POL(c2(x_1, x_2, x_3, x_4)) = x_1 + x_2 + x_3 + x_4 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c8(x_1)) = x_1 POL(c9(x_1)) = x_1 POL(cons_f(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1, x_2, x_3)) = x_1 + x_3 POL(g(x_1)) = [1] + x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0)) -> g(encArg(z0)) f(g(z0), s(0), z1) -> f(z1, z1, g(z0)) g(s(z0)) -> s(g(z0)) g(0) -> 0 Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(s(z0)) -> c9(G(z0)) G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0) -> c1(G(encArg(z0))) S tuples: G(s(z0)) -> c9(G(z0)) K tuples: G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) Defined Rule Symbols: encArg_1, f_3, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_3, ENCODE_F_3, ENCODE_G_1 Compound Symbols: c_1, c2_4, c3_2, c9_1, c10, c8_1, c1_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(s(z0)) -> c9(G(z0)) We considered the (Usable) Rules: encArg(s(z0)) -> s(encArg(z0)) f(g(z0), s(0), z1) -> f(z1, z1, g(z0)) g(s(z0)) -> s(g(z0)) encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0)) -> g(encArg(z0)) g(0) -> 0 encArg(0) -> 0 And the Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(s(z0)) -> c9(G(z0)) G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0) -> c1(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(ENCARG(x_1)) = [2]x_1 + x_1^2 POL(ENCODE_F(x_1, x_2, x_3)) = [2] + [2]x_1 + x_2 + [2]x_3 + [2]x_3^2 + x_2*x_3 + x_1*x_3 + x_1^2 + [2]x_1*x_2 + [2]x_2^2 POL(ENCODE_G(x_1)) = [2] + [2]x_1 + x_1^2 POL(F(x_1, x_2, x_3)) = x_1 POL(G(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10) = 0 POL(c2(x_1, x_2, x_3, x_4)) = x_1 + x_2 + x_3 + x_4 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c8(x_1)) = x_1 POL(c9(x_1)) = x_1 POL(cons_f(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = [2] + [2]x_1 POL(f(x_1, x_2, x_3)) = 0 POL(g(x_1)) = x_1 POL(s(x_1)) = [2] + x_1 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0)) -> g(encArg(z0)) f(g(z0), s(0), z1) -> f(z1, z1, g(z0)) g(s(z0)) -> s(g(z0)) g(0) -> 0 Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(s(z0)) -> c9(G(z0)) G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0) -> c1(G(encArg(z0))) S tuples:none K tuples: G(0) -> c10 F(g(z0), s(0), z1) -> c8(G(z0)) G(s(z0)) -> c9(G(z0)) Defined Rule Symbols: encArg_1, f_3, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_3, ENCODE_F_3, ENCODE_G_1 Compound Symbols: c_1, c2_4, c3_2, c9_1, c10, c8_1, c1_1 ---------------------------------------- (23) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (24) BOUNDS(1, 1) ---------------------------------------- (25) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (26) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(g(x), s(0'), y) -> f(y, y, g(x)) g(s(x)) -> s(g(x)) g(0') -> 0' The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0' Rewrite Strategy: INNERMOST ---------------------------------------- (27) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (28) Obligation: Innermost TRS: Rules: f(g(x), s(0'), y) -> f(y, y, g(x)) g(s(x)) -> s(g(x)) g(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0' Types: f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g 0' :: 0':s:cons_f:cons_g encArg :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_0 :: 0':s:cons_f:cons_g hole_0':s:cons_f:cons_g1_4 :: 0':s:cons_f:cons_g gen_0':s:cons_f:cons_g2_4 :: Nat -> 0':s:cons_f:cons_g ---------------------------------------- (29) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, g, encArg They will be analysed ascendingly in the following order: g < f f < encArg g < encArg ---------------------------------------- (30) Obligation: Innermost TRS: Rules: f(g(x), s(0'), y) -> f(y, y, g(x)) g(s(x)) -> s(g(x)) g(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0' Types: f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g 0' :: 0':s:cons_f:cons_g encArg :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_0 :: 0':s:cons_f:cons_g hole_0':s:cons_f:cons_g1_4 :: 0':s:cons_f:cons_g gen_0':s:cons_f:cons_g2_4 :: Nat -> 0':s:cons_f:cons_g Generator Equations: gen_0':s:cons_f:cons_g2_4(0) <=> 0' gen_0':s:cons_f:cons_g2_4(+(x, 1)) <=> s(gen_0':s:cons_f:cons_g2_4(x)) The following defined symbols remain to be analysed: g, f, encArg They will be analysed ascendingly in the following order: g < f f < encArg g < encArg ---------------------------------------- (31) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_0':s:cons_f:cons_g2_4(n4_4)) -> gen_0':s:cons_f:cons_g2_4(n4_4), rt in Omega(1 + n4_4) Induction Base: g(gen_0':s:cons_f:cons_g2_4(0)) ->_R^Omega(1) 0' Induction Step: g(gen_0':s:cons_f:cons_g2_4(+(n4_4, 1))) ->_R^Omega(1) s(g(gen_0':s:cons_f:cons_g2_4(n4_4))) ->_IH s(gen_0':s:cons_f:cons_g2_4(c5_4)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (32) Complex Obligation (BEST) ---------------------------------------- (33) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: f(g(x), s(0'), y) -> f(y, y, g(x)) g(s(x)) -> s(g(x)) g(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0' Types: f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g 0' :: 0':s:cons_f:cons_g encArg :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_0 :: 0':s:cons_f:cons_g hole_0':s:cons_f:cons_g1_4 :: 0':s:cons_f:cons_g gen_0':s:cons_f:cons_g2_4 :: Nat -> 0':s:cons_f:cons_g Generator Equations: gen_0':s:cons_f:cons_g2_4(0) <=> 0' gen_0':s:cons_f:cons_g2_4(+(x, 1)) <=> s(gen_0':s:cons_f:cons_g2_4(x)) The following defined symbols remain to be analysed: g, f, encArg They will be analysed ascendingly in the following order: g < f f < encArg g < encArg ---------------------------------------- (34) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (35) BOUNDS(n^1, INF) ---------------------------------------- (36) Obligation: Innermost TRS: Rules: f(g(x), s(0'), y) -> f(y, y, g(x)) g(s(x)) -> s(g(x)) g(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0' Types: f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g 0' :: 0':s:cons_f:cons_g encArg :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_0 :: 0':s:cons_f:cons_g hole_0':s:cons_f:cons_g1_4 :: 0':s:cons_f:cons_g gen_0':s:cons_f:cons_g2_4 :: Nat -> 0':s:cons_f:cons_g Lemmas: g(gen_0':s:cons_f:cons_g2_4(n4_4)) -> gen_0':s:cons_f:cons_g2_4(n4_4), rt in Omega(1 + n4_4) Generator Equations: gen_0':s:cons_f:cons_g2_4(0) <=> 0' gen_0':s:cons_f:cons_g2_4(+(x, 1)) <=> s(gen_0':s:cons_f:cons_g2_4(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (37) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':s:cons_f:cons_g2_4(n234_4)) -> gen_0':s:cons_f:cons_g2_4(n234_4), rt in Omega(0) Induction Base: encArg(gen_0':s:cons_f:cons_g2_4(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':s:cons_f:cons_g2_4(+(n234_4, 1))) ->_R^Omega(0) s(encArg(gen_0':s:cons_f:cons_g2_4(n234_4))) ->_IH s(gen_0':s:cons_f:cons_g2_4(c235_4)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (38) BOUNDS(1, INF)