/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 149 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 321 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 169 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 66 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 212 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 136 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 191 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 128 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (48) CpxRNTS (49) FinalProof [FINISHED, 0 ms] (50) BOUNDS(1, n^2) (51) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (52) CpxRelTRS (53) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (54) typed CpxTrs (55) OrderProof [LOWER BOUND(ID), 0 ms] (56) typed CpxTrs (57) RewriteLemmaProof [LOWER BOUND(ID), 387 ms] (58) BEST (59) proven lower bound (60) LowerBoundPropagationProof [FINISHED, 0 ms] (61) BOUNDS(n^1, INF) (62) typed CpxTrs (63) RewriteLemmaProof [LOWER BOUND(ID), 54 ms] (64) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(quot(x, s(z), s(z))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(quot(x, s(z), s(z))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(quot(x, s(z), s(z))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(quot(x, s(z), s(z))) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(quot(x, s(z), s(z))) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] The TRS has the following type information: quot :: 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot 0 :: 0:s:cons_quot s :: 0:s:cons_quot -> 0:s:cons_quot encArg :: 0:s:cons_quot -> 0:s:cons_quot cons_quot :: 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot encode_quot :: 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot encode_0 :: 0:s:cons_quot encode_s :: 0:s:cons_quot -> 0:s:cons_quot Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: quot_3 encArg_1 encode_quot_3 encode_0 encode_s_1 Due to the following rules being added: encArg(v0) -> 0 [0] encode_quot(v0, v1, v2) -> 0 [0] encode_0 -> 0 [0] encode_s(v0) -> 0 [0] quot(v0, v1, v2) -> 0 [0] And the following fresh constants: none ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(quot(x, s(z), s(z))) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encArg(v0) -> 0 [0] encode_quot(v0, v1, v2) -> 0 [0] encode_0 -> 0 [0] encode_s(v0) -> 0 [0] quot(v0, v1, v2) -> 0 [0] The TRS has the following type information: quot :: 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot 0 :: 0:s:cons_quot s :: 0:s:cons_quot -> 0:s:cons_quot encArg :: 0:s:cons_quot -> 0:s:cons_quot cons_quot :: 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot encode_quot :: 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot encode_0 :: 0:s:cons_quot encode_s :: 0:s:cons_quot -> 0:s:cons_quot Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(quot(x, s(z), s(z))) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encArg(v0) -> 0 [0] encode_quot(v0, v1, v2) -> 0 [0] encode_0 -> 0 [0] encode_s(v0) -> 0 [0] quot(v0, v1, v2) -> 0 [0] The TRS has the following type information: quot :: 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot 0 :: 0:s:cons_quot s :: 0:s:cons_quot -> 0:s:cons_quot encArg :: 0:s:cons_quot -> 0:s:cons_quot cons_quot :: 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot encode_quot :: 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot -> 0:s:cons_quot encode_0 :: 0:s:cons_quot encode_s :: 0:s:cons_quot -> 0:s:cons_quot Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 encArg(z') -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z' = 1 + x_1 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z1 = x_3, z' = x_1, x_3 >= 0, x_2 >= 0, z'' = x_2 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 encode_s(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 encode_s(z') -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z' = x_1 quot(z', z'', z1) -{ 1 }-> quot(x, y, z) :|: z' = 1 + x, z1 = z, z >= 0, x >= 0, y >= 0, z'' = 1 + y quot(z', z'', z1) -{ 1 }-> 0 :|: z >= 0, y >= 0, z'' = 1 + y, z1 = 1 + z, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 quot(z', z'', z1) -{ 1 }-> 1 + quot(x, 1 + z, 1 + z) :|: z'' = 0, z >= 0, z' = x, x >= 0, z1 = 1 + z ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + quot(z', 1 + (z1 - 1), 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { quot } { encode_0 } { encArg } { encode_quot } { encode_s } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + quot(z', 1 + (z1 - 1), 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {quot}, {encode_0}, {encArg}, {encode_quot}, {encode_s} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + quot(z', 1 + (z1 - 1), 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {quot}, {encode_0}, {encArg}, {encode_quot}, {encode_s} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + quot(z', 1 + (z1 - 1), 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {quot}, {encode_0}, {encArg}, {encode_quot}, {encode_s} Previous analysis results are: quot: runtime: ?, size: O(n^1) [1 + z'] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 2*z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + quot(z', 1 + (z1 - 1), 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {encArg}, {encode_quot}, {encode_s} Previous analysis results are: quot: runtime: O(n^1) [2 + 2*z'], size: O(n^1) [1 + z'] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 + 2*z' }-> s :|: s >= 0, s <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 3 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= z' + 1, z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {encArg}, {encode_quot}, {encode_s} Previous analysis results are: quot: runtime: O(n^1) [2 + 2*z'], size: O(n^1) [1 + z'] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 + 2*z' }-> s :|: s >= 0, s <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 3 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= z' + 1, z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {encArg}, {encode_quot}, {encode_s} Previous analysis results are: quot: runtime: O(n^1) [2 + 2*z'], size: O(n^1) [1 + z'] encode_0: runtime: ?, size: O(1) [0] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 + 2*z' }-> s :|: s >= 0, s <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 3 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= z' + 1, z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_quot}, {encode_s} Previous analysis results are: quot: runtime: O(n^1) [2 + 2*z'], size: O(n^1) [1 + z'] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 + 2*z' }-> s :|: s >= 0, s <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 3 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= z' + 1, z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_quot}, {encode_s} Previous analysis results are: quot: runtime: O(n^1) [2 + 2*z'], size: O(n^1) [1 + z'] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 + 2*z' }-> s :|: s >= 0, s <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 3 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= z' + 1, z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_quot}, {encode_s} Previous analysis results are: quot: runtime: O(n^1) [2 + 2*z'], size: O(n^1) [1 + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encArg: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2*z'^2 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 + 2*z' }-> s :|: s >= 0, s <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 3 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= z' + 1, z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_quot}, {encode_s} Previous analysis results are: quot: runtime: O(n^1) [2 + 2*z'], size: O(n^1) [1 + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encArg: runtime: O(n^2) [2*z'^2], size: O(n^1) [z'] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 + 2*s1 + 2*x_1^2 + 2*x_2^2 + 2*x_3^2 }-> s4 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, s3 >= 0, s3 <= x_3, s4 >= 0, s4 <= s1 + 1, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 2 + -4*z' + 2*z'^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z' - 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 2 + 2*s5 + 2*z'^2 + 2*z''^2 + 2*z1^2 }-> s8 :|: s5 >= 0, s5 <= z', s6 >= 0, s6 <= z'', s7 >= 0, s7 <= z1, s8 >= 0, s8 <= s5 + 1, z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= z', z' >= 0 quot(z', z'', z1) -{ 1 + 2*z' }-> s :|: s >= 0, s <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 3 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= z' + 1, z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_quot}, {encode_s} Previous analysis results are: quot: runtime: O(n^1) [2 + 2*z'], size: O(n^1) [1 + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encArg: runtime: O(n^2) [2*z'^2], size: O(n^1) [z'] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 + 2*s1 + 2*x_1^2 + 2*x_2^2 + 2*x_3^2 }-> s4 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, s3 >= 0, s3 <= x_3, s4 >= 0, s4 <= s1 + 1, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 2 + -4*z' + 2*z'^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z' - 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 2 + 2*s5 + 2*z'^2 + 2*z''^2 + 2*z1^2 }-> s8 :|: s5 >= 0, s5 <= z', s6 >= 0, s6 <= z'', s7 >= 0, s7 <= z1, s8 >= 0, s8 <= s5 + 1, z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= z', z' >= 0 quot(z', z'', z1) -{ 1 + 2*z' }-> s :|: s >= 0, s <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 3 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= z' + 1, z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_quot}, {encode_s} Previous analysis results are: quot: runtime: O(n^1) [2 + 2*z'], size: O(n^1) [1 + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encArg: runtime: O(n^2) [2*z'^2], size: O(n^1) [z'] encode_quot: runtime: ?, size: O(n^1) [1 + z'] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_quot after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2 + 2*z' + 2*z'^2 + 2*z''^2 + 2*z1^2 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 + 2*s1 + 2*x_1^2 + 2*x_2^2 + 2*x_3^2 }-> s4 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, s3 >= 0, s3 <= x_3, s4 >= 0, s4 <= s1 + 1, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 2 + -4*z' + 2*z'^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z' - 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 2 + 2*s5 + 2*z'^2 + 2*z''^2 + 2*z1^2 }-> s8 :|: s5 >= 0, s5 <= z', s6 >= 0, s6 <= z'', s7 >= 0, s7 <= z1, s8 >= 0, s8 <= s5 + 1, z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= z', z' >= 0 quot(z', z'', z1) -{ 1 + 2*z' }-> s :|: s >= 0, s <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 3 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= z' + 1, z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: quot: runtime: O(n^1) [2 + 2*z'], size: O(n^1) [1 + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encArg: runtime: O(n^2) [2*z'^2], size: O(n^1) [z'] encode_quot: runtime: O(n^2) [2 + 2*z' + 2*z'^2 + 2*z''^2 + 2*z1^2], size: O(n^1) [1 + z'] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 + 2*s1 + 2*x_1^2 + 2*x_2^2 + 2*x_3^2 }-> s4 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, s3 >= 0, s3 <= x_3, s4 >= 0, s4 <= s1 + 1, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 2 + -4*z' + 2*z'^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z' - 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 2 + 2*s5 + 2*z'^2 + 2*z''^2 + 2*z1^2 }-> s8 :|: s5 >= 0, s5 <= z', s6 >= 0, s6 <= z'', s7 >= 0, s7 <= z1, s8 >= 0, s8 <= s5 + 1, z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= z', z' >= 0 quot(z', z'', z1) -{ 1 + 2*z' }-> s :|: s >= 0, s <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 3 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= z' + 1, z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: quot: runtime: O(n^1) [2 + 2*z'], size: O(n^1) [1 + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encArg: runtime: O(n^2) [2*z'^2], size: O(n^1) [z'] encode_quot: runtime: O(n^2) [2 + 2*z' + 2*z'^2 + 2*z''^2 + 2*z1^2], size: O(n^1) [1 + z'] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 + 2*s1 + 2*x_1^2 + 2*x_2^2 + 2*x_3^2 }-> s4 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, s3 >= 0, s3 <= x_3, s4 >= 0, s4 <= s1 + 1, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 2 + -4*z' + 2*z'^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z' - 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 2 + 2*s5 + 2*z'^2 + 2*z''^2 + 2*z1^2 }-> s8 :|: s5 >= 0, s5 <= z', s6 >= 0, s6 <= z'', s7 >= 0, s7 <= z1, s8 >= 0, s8 <= s5 + 1, z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= z', z' >= 0 quot(z', z'', z1) -{ 1 + 2*z' }-> s :|: s >= 0, s <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 3 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= z' + 1, z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: quot: runtime: O(n^1) [2 + 2*z'], size: O(n^1) [1 + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encArg: runtime: O(n^2) [2*z'^2], size: O(n^1) [z'] encode_quot: runtime: O(n^2) [2 + 2*z' + 2*z'^2 + 2*z''^2 + 2*z1^2], size: O(n^1) [1 + z'] encode_s: runtime: ?, size: O(n^1) [1 + z'] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2*z'^2 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 + 2*s1 + 2*x_1^2 + 2*x_2^2 + 2*x_3^2 }-> s4 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, s3 >= 0, s3 <= x_3, s4 >= 0, s4 <= s1 + 1, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 2 + -4*z' + 2*z'^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z' - 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_quot(z', z'', z1) -{ 2 + 2*s5 + 2*z'^2 + 2*z''^2 + 2*z1^2 }-> s8 :|: s5 >= 0, s5 <= z', s6 >= 0, s6 <= z'', s7 >= 0, s7 <= z1, s8 >= 0, s8 <= s5 + 1, z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= z', z' >= 0 quot(z', z'', z1) -{ 1 + 2*z' }-> s :|: s >= 0, s <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 3 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= z' + 1, z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: quot: runtime: O(n^1) [2 + 2*z'], size: O(n^1) [1 + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encArg: runtime: O(n^2) [2*z'^2], size: O(n^1) [z'] encode_quot: runtime: O(n^2) [2 + 2*z' + 2*z'^2 + 2*z''^2 + 2*z1^2], size: O(n^1) [1 + z'] encode_s: runtime: O(n^2) [2*z'^2], size: O(n^1) [1 + z'] ---------------------------------------- (49) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (50) BOUNDS(1, n^2) ---------------------------------------- (51) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (52) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: quot(0', s(y), s(z)) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(quot(x, s(z), s(z))) The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (53) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (54) Obligation: Innermost TRS: Rules: quot(0', s(y), s(z)) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(quot(x, s(z), s(z))) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) Types: quot :: 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot 0' :: 0':s:cons_quot s :: 0':s:cons_quot -> 0':s:cons_quot encArg :: 0':s:cons_quot -> 0':s:cons_quot cons_quot :: 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot encode_quot :: 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot encode_0 :: 0':s:cons_quot encode_s :: 0':s:cons_quot -> 0':s:cons_quot hole_0':s:cons_quot1_4 :: 0':s:cons_quot gen_0':s:cons_quot2_4 :: Nat -> 0':s:cons_quot ---------------------------------------- (55) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: quot, encArg They will be analysed ascendingly in the following order: quot < encArg ---------------------------------------- (56) Obligation: Innermost TRS: Rules: quot(0', s(y), s(z)) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(quot(x, s(z), s(z))) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) Types: quot :: 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot 0' :: 0':s:cons_quot s :: 0':s:cons_quot -> 0':s:cons_quot encArg :: 0':s:cons_quot -> 0':s:cons_quot cons_quot :: 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot encode_quot :: 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot encode_0 :: 0':s:cons_quot encode_s :: 0':s:cons_quot -> 0':s:cons_quot hole_0':s:cons_quot1_4 :: 0':s:cons_quot gen_0':s:cons_quot2_4 :: Nat -> 0':s:cons_quot Generator Equations: gen_0':s:cons_quot2_4(0) <=> 0' gen_0':s:cons_quot2_4(+(x, 1)) <=> s(gen_0':s:cons_quot2_4(x)) The following defined symbols remain to be analysed: quot, encArg They will be analysed ascendingly in the following order: quot < encArg ---------------------------------------- (57) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: quot(gen_0':s:cons_quot2_4(n4_4), gen_0':s:cons_quot2_4(+(1, n4_4)), gen_0':s:cons_quot2_4(1)) -> gen_0':s:cons_quot2_4(0), rt in Omega(1 + n4_4) Induction Base: quot(gen_0':s:cons_quot2_4(0), gen_0':s:cons_quot2_4(+(1, 0)), gen_0':s:cons_quot2_4(1)) ->_R^Omega(1) 0' Induction Step: quot(gen_0':s:cons_quot2_4(+(n4_4, 1)), gen_0':s:cons_quot2_4(+(1, +(n4_4, 1))), gen_0':s:cons_quot2_4(1)) ->_R^Omega(1) quot(gen_0':s:cons_quot2_4(n4_4), gen_0':s:cons_quot2_4(+(1, n4_4)), gen_0':s:cons_quot2_4(1)) ->_IH gen_0':s:cons_quot2_4(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (58) Complex Obligation (BEST) ---------------------------------------- (59) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: quot(0', s(y), s(z)) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(quot(x, s(z), s(z))) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) Types: quot :: 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot 0' :: 0':s:cons_quot s :: 0':s:cons_quot -> 0':s:cons_quot encArg :: 0':s:cons_quot -> 0':s:cons_quot cons_quot :: 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot encode_quot :: 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot encode_0 :: 0':s:cons_quot encode_s :: 0':s:cons_quot -> 0':s:cons_quot hole_0':s:cons_quot1_4 :: 0':s:cons_quot gen_0':s:cons_quot2_4 :: Nat -> 0':s:cons_quot Generator Equations: gen_0':s:cons_quot2_4(0) <=> 0' gen_0':s:cons_quot2_4(+(x, 1)) <=> s(gen_0':s:cons_quot2_4(x)) The following defined symbols remain to be analysed: quot, encArg They will be analysed ascendingly in the following order: quot < encArg ---------------------------------------- (60) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (61) BOUNDS(n^1, INF) ---------------------------------------- (62) Obligation: Innermost TRS: Rules: quot(0', s(y), s(z)) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(quot(x, s(z), s(z))) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) Types: quot :: 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot 0' :: 0':s:cons_quot s :: 0':s:cons_quot -> 0':s:cons_quot encArg :: 0':s:cons_quot -> 0':s:cons_quot cons_quot :: 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot encode_quot :: 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot -> 0':s:cons_quot encode_0 :: 0':s:cons_quot encode_s :: 0':s:cons_quot -> 0':s:cons_quot hole_0':s:cons_quot1_4 :: 0':s:cons_quot gen_0':s:cons_quot2_4 :: Nat -> 0':s:cons_quot Lemmas: quot(gen_0':s:cons_quot2_4(n4_4), gen_0':s:cons_quot2_4(+(1, n4_4)), gen_0':s:cons_quot2_4(1)) -> gen_0':s:cons_quot2_4(0), rt in Omega(1 + n4_4) Generator Equations: gen_0':s:cons_quot2_4(0) <=> 0' gen_0':s:cons_quot2_4(+(x, 1)) <=> s(gen_0':s:cons_quot2_4(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (63) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':s:cons_quot2_4(n1953_4)) -> gen_0':s:cons_quot2_4(n1953_4), rt in Omega(0) Induction Base: encArg(gen_0':s:cons_quot2_4(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':s:cons_quot2_4(+(n1953_4, 1))) ->_R^Omega(0) s(encArg(gen_0':s:cons_quot2_4(n1953_4))) ->_IH s(gen_0':s:cons_quot2_4(c1954_4)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (64) BOUNDS(1, INF)