/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 290 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(true, y) -> y and(false, y) -> false eq(nil, nil) -> true eq(cons(t, l), nil) -> false eq(nil, cons(t, l)) -> false eq(cons(t, l), cons(t', l')) -> and(eq(t, t'), eq(l, l')) eq(var(l), var(l')) -> eq(l, l') eq(var(l), apply(t, s)) -> false eq(var(l), lambda(x, t)) -> false eq(apply(t, s), var(l)) -> false eq(apply(t, s), apply(t', s')) -> and(eq(t, t'), eq(s, s')) eq(apply(t, s), lambda(x, t)) -> false eq(lambda(x, t), var(l)) -> false eq(lambda(x, t), apply(t, s)) -> false eq(lambda(x, t), lambda(x', t')) -> and(eq(x, x'), eq(t, t')) if(true, var(k), var(l')) -> var(k) if(false, var(k), var(l')) -> var(l') ren(var(l), var(k), var(l')) -> if(eq(l, l'), var(k), var(l')) ren(x, y, apply(t, s)) -> apply(ren(x, y, t), ren(x, y, s)) ren(x, y, lambda(z, t)) -> lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(var(x_1)) -> var(encArg(x_1)) encArg(apply(x_1, x_2)) -> apply(encArg(x_1), encArg(x_2)) encArg(lambda(x_1, x_2)) -> lambda(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_ren(x_1, x_2, x_3)) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_var(x_1) -> var(encArg(x_1)) encode_apply(x_1, x_2) -> apply(encArg(x_1), encArg(x_2)) encode_lambda(x_1, x_2) -> lambda(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_ren(x_1, x_2, x_3) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(true, y) -> y and(false, y) -> false eq(nil, nil) -> true eq(cons(t, l), nil) -> false eq(nil, cons(t, l)) -> false eq(cons(t, l), cons(t', l')) -> and(eq(t, t'), eq(l, l')) eq(var(l), var(l')) -> eq(l, l') eq(var(l), apply(t, s)) -> false eq(var(l), lambda(x, t)) -> false eq(apply(t, s), var(l)) -> false eq(apply(t, s), apply(t', s')) -> and(eq(t, t'), eq(s, s')) eq(apply(t, s), lambda(x, t)) -> false eq(lambda(x, t), var(l)) -> false eq(lambda(x, t), apply(t, s)) -> false eq(lambda(x, t), lambda(x', t')) -> and(eq(x, x'), eq(t, t')) if(true, var(k), var(l')) -> var(k) if(false, var(k), var(l')) -> var(l') ren(var(l), var(k), var(l')) -> if(eq(l, l'), var(k), var(l')) ren(x, y, apply(t, s)) -> apply(ren(x, y, t), ren(x, y, s)) ren(x, y, lambda(z, t)) -> lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t))) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(var(x_1)) -> var(encArg(x_1)) encArg(apply(x_1, x_2)) -> apply(encArg(x_1), encArg(x_2)) encArg(lambda(x_1, x_2)) -> lambda(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_ren(x_1, x_2, x_3)) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_var(x_1) -> var(encArg(x_1)) encode_apply(x_1, x_2) -> apply(encArg(x_1), encArg(x_2)) encode_lambda(x_1, x_2) -> lambda(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_ren(x_1, x_2, x_3) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(true, y) -> y and(false, y) -> false eq(nil, nil) -> true eq(cons(t, l), nil) -> false eq(nil, cons(t, l)) -> false eq(cons(t, l), cons(t', l')) -> and(eq(t, t'), eq(l, l')) eq(var(l), var(l')) -> eq(l, l') eq(var(l), apply(t, s)) -> false eq(var(l), lambda(x, t)) -> false eq(apply(t, s), var(l)) -> false eq(apply(t, s), apply(t', s')) -> and(eq(t, t'), eq(s, s')) eq(apply(t, s), lambda(x, t)) -> false eq(lambda(x, t), var(l)) -> false eq(lambda(x, t), apply(t, s)) -> false eq(lambda(x, t), lambda(x', t')) -> and(eq(x, x'), eq(t, t')) if(true, var(k), var(l')) -> var(k) if(false, var(k), var(l')) -> var(l') ren(var(l), var(k), var(l')) -> if(eq(l, l'), var(k), var(l')) ren(x, y, apply(t, s)) -> apply(ren(x, y, t), ren(x, y, s)) ren(x, y, lambda(z, t)) -> lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t))) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(var(x_1)) -> var(encArg(x_1)) encArg(apply(x_1, x_2)) -> apply(encArg(x_1), encArg(x_2)) encArg(lambda(x_1, x_2)) -> lambda(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_ren(x_1, x_2, x_3)) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_var(x_1) -> var(encArg(x_1)) encode_apply(x_1, x_2) -> apply(encArg(x_1), encArg(x_2)) encode_lambda(x_1, x_2) -> lambda(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_ren(x_1, x_2, x_3) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(true, y) -> y and(false, y) -> false eq(nil, nil) -> true eq(cons(t, l), nil) -> false eq(nil, cons(t, l)) -> false eq(cons(t, l), cons(t', l')) -> and(eq(t, t'), eq(l, l')) eq(var(l), var(l')) -> eq(l, l') eq(var(l), apply(t, s)) -> false eq(var(l), lambda(x, t)) -> false eq(apply(t, s), var(l)) -> false eq(apply(t, s), apply(t', s')) -> and(eq(t, t'), eq(s, s')) eq(apply(t, s), lambda(x, t)) -> false eq(lambda(x, t), var(l)) -> false eq(lambda(x, t), apply(t, s)) -> false eq(lambda(x, t), lambda(x', t')) -> and(eq(x, x'), eq(t, t')) if(true, var(k), var(l')) -> var(k) if(false, var(k), var(l')) -> var(l') ren(var(l), var(k), var(l')) -> if(eq(l, l'), var(k), var(l')) ren(x, y, apply(t, s)) -> apply(ren(x, y, t), ren(x, y, s)) ren(x, y, lambda(z, t)) -> lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t))) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(var(x_1)) -> var(encArg(x_1)) encArg(apply(x_1, x_2)) -> apply(encArg(x_1), encArg(x_2)) encArg(lambda(x_1, x_2)) -> lambda(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_ren(x_1, x_2, x_3)) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_var(x_1) -> var(encArg(x_1)) encode_apply(x_1, x_2) -> apply(encArg(x_1), encArg(x_2)) encode_lambda(x_1, x_2) -> lambda(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_ren(x_1, x_2, x_3) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence eq(lambda(x, t), lambda(x', t')) ->^+ and(eq(x, x'), eq(t, t')) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / lambda(x, t), x' / lambda(x', t')]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(true, y) -> y and(false, y) -> false eq(nil, nil) -> true eq(cons(t, l), nil) -> false eq(nil, cons(t, l)) -> false eq(cons(t, l), cons(t', l')) -> and(eq(t, t'), eq(l, l')) eq(var(l), var(l')) -> eq(l, l') eq(var(l), apply(t, s)) -> false eq(var(l), lambda(x, t)) -> false eq(apply(t, s), var(l)) -> false eq(apply(t, s), apply(t', s')) -> and(eq(t, t'), eq(s, s')) eq(apply(t, s), lambda(x, t)) -> false eq(lambda(x, t), var(l)) -> false eq(lambda(x, t), apply(t, s)) -> false eq(lambda(x, t), lambda(x', t')) -> and(eq(x, x'), eq(t, t')) if(true, var(k), var(l')) -> var(k) if(false, var(k), var(l')) -> var(l') ren(var(l), var(k), var(l')) -> if(eq(l, l'), var(k), var(l')) ren(x, y, apply(t, s)) -> apply(ren(x, y, t), ren(x, y, s)) ren(x, y, lambda(z, t)) -> lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t))) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(var(x_1)) -> var(encArg(x_1)) encArg(apply(x_1, x_2)) -> apply(encArg(x_1), encArg(x_2)) encArg(lambda(x_1, x_2)) -> lambda(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_ren(x_1, x_2, x_3)) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_var(x_1) -> var(encArg(x_1)) encode_apply(x_1, x_2) -> apply(encArg(x_1), encArg(x_2)) encode_lambda(x_1, x_2) -> lambda(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_ren(x_1, x_2, x_3) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(true, y) -> y and(false, y) -> false eq(nil, nil) -> true eq(cons(t, l), nil) -> false eq(nil, cons(t, l)) -> false eq(cons(t, l), cons(t', l')) -> and(eq(t, t'), eq(l, l')) eq(var(l), var(l')) -> eq(l, l') eq(var(l), apply(t, s)) -> false eq(var(l), lambda(x, t)) -> false eq(apply(t, s), var(l)) -> false eq(apply(t, s), apply(t', s')) -> and(eq(t, t'), eq(s, s')) eq(apply(t, s), lambda(x, t)) -> false eq(lambda(x, t), var(l)) -> false eq(lambda(x, t), apply(t, s)) -> false eq(lambda(x, t), lambda(x', t')) -> and(eq(x, x'), eq(t, t')) if(true, var(k), var(l')) -> var(k) if(false, var(k), var(l')) -> var(l') ren(var(l), var(k), var(l')) -> if(eq(l, l'), var(k), var(l')) ren(x, y, apply(t, s)) -> apply(ren(x, y, t), ren(x, y, s)) ren(x, y, lambda(z, t)) -> lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t))) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(var(x_1)) -> var(encArg(x_1)) encArg(apply(x_1, x_2)) -> apply(encArg(x_1), encArg(x_2)) encArg(lambda(x_1, x_2)) -> lambda(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_ren(x_1, x_2, x_3)) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_var(x_1) -> var(encArg(x_1)) encode_apply(x_1, x_2) -> apply(encArg(x_1), encArg(x_2)) encode_lambda(x_1, x_2) -> lambda(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_ren(x_1, x_2, x_3) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST