/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^3)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 251 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 1726 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 1 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 385 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 149 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 96 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 11 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 451 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 23 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 106 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 31 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 86 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 11 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 2084 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 1661 ms] (54) CpxRNTS (55) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 764 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 236 ms] (60) CpxRNTS (61) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 240 ms] (64) CpxRNTS (65) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (66) CpxRNTS (67) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 260 ms] (70) CpxRNTS (71) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (72) CpxRNTS (73) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 29 ms] (76) CpxRNTS (77) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (78) CpxRNTS (79) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (80) CpxRNTS (81) IntTrsBoundProof [UPPER BOUND(ID), 116 ms] (82) CpxRNTS (83) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (84) CpxRNTS (85) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (86) CpxRNTS (87) IntTrsBoundProof [UPPER BOUND(ID), 217 ms] (88) CpxRNTS (89) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (90) CpxRNTS (91) FinalProof [FINISHED, 0 ms] (92) BOUNDS(1, n^3) (93) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (94) TRS for Loop Detection (95) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (96) BEST (97) proven lower bound (98) LowerBoundPropagationProof [FINISHED, 0 ms] (99) BOUNDS(n^1, INF) (100) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(0, x) -> 0 minus(s(x), s(y)) -> minus(x, y) gcd(0, y) -> y gcd(s(x), 0) -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, x, y) -> gcd(minus(x, y), y) if_gcd(false, x, y) -> gcd(minus(y, x), x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_gcd(x_1, x_2)) -> gcd(encArg(x_1), encArg(x_2)) encArg(cons_if_gcd(x_1, x_2, x_3)) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_gcd(x_1, x_2) -> gcd(encArg(x_1), encArg(x_2)) encode_if_gcd(x_1, x_2, x_3) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(0, x) -> 0 minus(s(x), s(y)) -> minus(x, y) gcd(0, y) -> y gcd(s(x), 0) -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, x, y) -> gcd(minus(x, y), y) if_gcd(false, x, y) -> gcd(minus(y, x), x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_gcd(x_1, x_2)) -> gcd(encArg(x_1), encArg(x_2)) encArg(cons_if_gcd(x_1, x_2, x_3)) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_gcd(x_1, x_2) -> gcd(encArg(x_1), encArg(x_2)) encode_if_gcd(x_1, x_2, x_3) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(0, x) -> 0 minus(s(x), s(y)) -> minus(x, y) gcd(0, y) -> y gcd(s(x), 0) -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, x, y) -> gcd(minus(x, y), y) if_gcd(false, x, y) -> gcd(minus(y, x), x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_gcd(x_1, x_2)) -> gcd(encArg(x_1), encArg(x_2)) encArg(cons_if_gcd(x_1, x_2, x_3)) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_gcd(x_1, x_2) -> gcd(encArg(x_1), encArg(x_2)) encode_if_gcd(x_1, x_2, x_3) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(x, 0) -> x [1] minus(0, x) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] gcd(0, y) -> y [1] gcd(s(x), 0) -> s(x) [1] gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) [1] if_gcd(true, x, y) -> gcd(minus(x, y), y) [1] if_gcd(false, x, y) -> gcd(minus(y, x), x) [1] encArg(0) -> 0 [0] encArg(true) -> true [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(false) -> false [0] encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) [0] encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_gcd(x_1, x_2)) -> gcd(encArg(x_1), encArg(x_2)) [0] encArg(cons_if_gcd(x_1, x_2, x_3)) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_true -> true [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_false -> false [0] encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_gcd(x_1, x_2) -> gcd(encArg(x_1), encArg(x_2)) [0] encode_if_gcd(x_1, x_2, x_3) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(x, 0) -> x [1] minus(0, x) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] gcd(0, y) -> y [1] gcd(s(x), 0) -> s(x) [1] gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) [1] if_gcd(true, x, y) -> gcd(minus(x, y), y) [1] if_gcd(false, x, y) -> gcd(minus(y, x), x) [1] encArg(0) -> 0 [0] encArg(true) -> true [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(false) -> false [0] encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) [0] encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_gcd(x_1, x_2)) -> gcd(encArg(x_1), encArg(x_2)) [0] encArg(cons_if_gcd(x_1, x_2, x_3)) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_true -> true [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_false -> false [0] encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_gcd(x_1, x_2) -> gcd(encArg(x_1), encArg(x_2)) [0] encode_if_gcd(x_1, x_2, x_3) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) [0] The TRS has the following type information: le :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd 0 :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd true :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd s :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd false :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd minus :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd if_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd encArg :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd cons_le :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd cons_minus :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd cons_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd cons_if_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd encode_le :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd encode_0 :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd encode_true :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd encode_s :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd encode_false :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd encode_minus :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd encode_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd encode_if_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: minus_2 le_2 gcd_2 if_gcd_3 encArg_1 encode_le_2 encode_0 encode_true encode_s_1 encode_false encode_minus_2 encode_gcd_2 encode_if_gcd_3 Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_le(v0, v1) -> null_encode_le [0] encode_0 -> null_encode_0 [0] encode_true -> null_encode_true [0] encode_s(v0) -> null_encode_s [0] encode_false -> null_encode_false [0] encode_minus(v0, v1) -> null_encode_minus [0] encode_gcd(v0, v1) -> null_encode_gcd [0] encode_if_gcd(v0, v1, v2) -> null_encode_if_gcd [0] minus(v0, v1) -> null_minus [0] le(v0, v1) -> null_le [0] gcd(v0, v1) -> null_gcd [0] if_gcd(v0, v1, v2) -> null_if_gcd [0] And the following fresh constants: null_encArg, null_encode_le, null_encode_0, null_encode_true, null_encode_s, null_encode_false, null_encode_minus, null_encode_gcd, null_encode_if_gcd, null_minus, null_le, null_gcd, null_if_gcd ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(x, 0) -> x [1] minus(0, x) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] gcd(0, y) -> y [1] gcd(s(x), 0) -> s(x) [1] gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) [1] if_gcd(true, x, y) -> gcd(minus(x, y), y) [1] if_gcd(false, x, y) -> gcd(minus(y, x), x) [1] encArg(0) -> 0 [0] encArg(true) -> true [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(false) -> false [0] encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) [0] encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_gcd(x_1, x_2)) -> gcd(encArg(x_1), encArg(x_2)) [0] encArg(cons_if_gcd(x_1, x_2, x_3)) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_true -> true [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_false -> false [0] encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_gcd(x_1, x_2) -> gcd(encArg(x_1), encArg(x_2)) [0] encode_if_gcd(x_1, x_2, x_3) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(v0) -> null_encArg [0] encode_le(v0, v1) -> null_encode_le [0] encode_0 -> null_encode_0 [0] encode_true -> null_encode_true [0] encode_s(v0) -> null_encode_s [0] encode_false -> null_encode_false [0] encode_minus(v0, v1) -> null_encode_minus [0] encode_gcd(v0, v1) -> null_encode_gcd [0] encode_if_gcd(v0, v1, v2) -> null_encode_if_gcd [0] minus(v0, v1) -> null_minus [0] le(v0, v1) -> null_le [0] gcd(v0, v1) -> null_gcd [0] if_gcd(v0, v1, v2) -> null_if_gcd [0] The TRS has the following type information: le :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd 0 :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd true :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd s :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd false :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd minus :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd if_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encArg :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd cons_le :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd cons_minus :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd cons_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd cons_if_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_le :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_0 :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_true :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_s :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_false :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_minus :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_if_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encArg :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_le :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_0 :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_true :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_s :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_false :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_minus :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_if_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_minus :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_le :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_if_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(x, 0) -> x [1] minus(0, x) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] gcd(0, y) -> y [1] gcd(s(x), 0) -> s(x) [1] gcd(s(x), s(0)) -> if_gcd(true, s(x), s(0)) [2] gcd(s(0), s(s(x'))) -> if_gcd(false, s(0), s(s(x'))) [2] gcd(s(s(y')), s(s(x''))) -> if_gcd(le(x'', y'), s(s(y')), s(s(x''))) [2] gcd(s(x), s(y)) -> if_gcd(null_le, s(x), s(y)) [1] if_gcd(true, x, 0) -> gcd(x, 0) [2] if_gcd(true, 0, y) -> gcd(0, y) [2] if_gcd(true, s(x1), s(y'')) -> gcd(minus(x1, y''), s(y'')) [2] if_gcd(true, x, y) -> gcd(null_minus, y) [1] if_gcd(false, 0, y) -> gcd(y, 0) [2] if_gcd(false, x, 0) -> gcd(0, x) [2] if_gcd(false, s(y1), s(x2)) -> gcd(minus(x2, y1), s(y1)) [2] if_gcd(false, x, y) -> gcd(null_minus, x) [1] encArg(0) -> 0 [0] encArg(true) -> true [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(false) -> false [0] encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) [0] encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_gcd(x_1, x_2)) -> gcd(encArg(x_1), encArg(x_2)) [0] encArg(cons_if_gcd(x_1, x_2, x_3)) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_true -> true [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_false -> false [0] encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_gcd(x_1, x_2) -> gcd(encArg(x_1), encArg(x_2)) [0] encode_if_gcd(x_1, x_2, x_3) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(v0) -> null_encArg [0] encode_le(v0, v1) -> null_encode_le [0] encode_0 -> null_encode_0 [0] encode_true -> null_encode_true [0] encode_s(v0) -> null_encode_s [0] encode_false -> null_encode_false [0] encode_minus(v0, v1) -> null_encode_minus [0] encode_gcd(v0, v1) -> null_encode_gcd [0] encode_if_gcd(v0, v1, v2) -> null_encode_if_gcd [0] minus(v0, v1) -> null_minus [0] le(v0, v1) -> null_le [0] gcd(v0, v1) -> null_gcd [0] if_gcd(v0, v1, v2) -> null_if_gcd [0] The TRS has the following type information: le :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd 0 :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd true :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd s :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd false :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd minus :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd if_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encArg :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd cons_le :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd cons_minus :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd cons_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd cons_if_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_le :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_0 :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_true :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_s :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_false :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_minus :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd encode_if_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd -> 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encArg :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_le :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_0 :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_true :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_s :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_false :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_minus :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_encode_if_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_minus :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_le :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd null_if_gcd :: 0:true:s:false:cons_le:cons_minus:cons_gcd:cons_if_gcd:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_gcd:null_encode_if_gcd:null_minus:null_le:null_gcd:null_if_gcd Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 true => 2 false => 1 null_encArg => 0 null_encode_le => 0 null_encode_0 => 0 null_encode_true => 0 null_encode_s => 0 null_encode_false => 0 null_encode_minus => 0 null_encode_gcd => 0 null_encode_if_gcd => 0 null_minus => 0 null_le => 0 null_gcd => 0 null_if_gcd => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_gcd(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_le(z, z') -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_le(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_minus(z, z') -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> y :|: y >= 0, z = 0, z' = y gcd(z, z') -{ 2 }-> if_gcd(le(x'', y'), 1 + (1 + y'), 1 + (1 + x'')) :|: z' = 1 + (1 + x''), z = 1 + (1 + y'), y' >= 0, x'' >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + x, 1 + 0) :|: x >= 0, z' = 1 + 0, z = 1 + x gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + x')) :|: z' = 1 + (1 + x'), z = 1 + 0, x' >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + x, 1 + y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gcd(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 gcd(z, z') -{ 1 }-> 1 + x :|: x >= 0, z = 1 + x, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(x, 0) :|: z = 2, z'' = 0, z' = x, x >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(y, 0) :|: z'' = y, z = 1, y >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(minus(x1, y''), 1 + y'') :|: z = 2, x1 >= 0, y'' >= 0, z' = 1 + x1, z'' = 1 + y'' if_gcd(z, z', z'') -{ 2 }-> gcd(minus(x2, y1), 1 + y1) :|: y1 >= 0, z' = 1 + y1, z = 1, z'' = 1 + x2, x2 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, x) :|: z'' = 0, z' = x, z = 1, x >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, x) :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, y) :|: z = 2, z'' = y, y >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, y) :|: z = 2, z' = x, z'' = y, x >= 0, y >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 le(z, z') -{ 1 }-> le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x le(z, z') -{ 1 }-> 2 :|: y >= 0, z = 0, z' = y le(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 le(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 1 }-> minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x minus(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(minus(z' - 1, z'' - 1), 1 + (z'' - 1)) :|: z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(minus(z'' - 1, z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { minus } { encode_0 } { le } { encode_false } { encode_true } { gcd, if_gcd } { encArg } { encode_if_gcd } { encode_gcd } { encode_minus } { encode_le } { encode_s } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(minus(z' - 1, z'' - 1), 1 + (z'' - 1)) :|: z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(minus(z'' - 1, z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {minus}, {encode_0}, {le}, {encode_false}, {encode_true}, {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(minus(z' - 1, z'' - 1), 1 + (z'' - 1)) :|: z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(minus(z'' - 1, z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {minus}, {encode_0}, {le}, {encode_false}, {encode_true}, {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(minus(z' - 1, z'' - 1), 1 + (z'' - 1)) :|: z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(minus(z'' - 1, z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {minus}, {encode_0}, {le}, {encode_false}, {encode_true}, {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: ?, size: O(n^1) [z] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(minus(z' - 1, z'' - 1), 1 + (z'' - 1)) :|: z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(minus(z'' - 1, z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {le}, {encode_false}, {encode_true}, {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(s', 1 + (z'' - 1)) :|: s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(s'', 1 + (z' - 1)) :|: s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {le}, {encode_false}, {encode_true}, {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(s', 1 + (z'' - 1)) :|: s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(s'', 1 + (z' - 1)) :|: s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {le}, {encode_false}, {encode_true}, {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: ?, size: O(1) [0] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(s', 1 + (z'' - 1)) :|: s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(s'', 1 + (z' - 1)) :|: s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {le}, {encode_false}, {encode_true}, {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(s', 1 + (z'' - 1)) :|: s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(s'', 1 + (z' - 1)) :|: s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {le}, {encode_false}, {encode_true}, {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: le after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(s', 1 + (z'' - 1)) :|: s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(s'', 1 + (z' - 1)) :|: s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {le}, {encode_false}, {encode_true}, {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: ?, size: O(1) [2] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: le after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(s', 1 + (z'' - 1)) :|: s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(s'', 1 + (z' - 1)) :|: s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_false}, {encode_true}, {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 + z }-> if_gcd(s2, 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(s', 1 + (z'' - 1)) :|: s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(s'', 1 + (z' - 1)) :|: s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_false}, {encode_true}, {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_false after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 + z }-> if_gcd(s2, 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(s', 1 + (z'' - 1)) :|: s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(s'', 1 + (z' - 1)) :|: s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_false}, {encode_true}, {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: ?, size: O(1) [1] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_false after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 + z }-> if_gcd(s2, 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(s', 1 + (z'' - 1)) :|: s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(s'', 1 + (z' - 1)) :|: s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_true}, {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 + z }-> if_gcd(s2, 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(s', 1 + (z'' - 1)) :|: s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(s'', 1 + (z' - 1)) :|: s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_true}, {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_true after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 + z }-> if_gcd(s2, 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(s', 1 + (z'' - 1)) :|: s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(s'', 1 + (z' - 1)) :|: s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_true}, {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: ?, size: O(1) [2] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_true after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 + z }-> if_gcd(s2, 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(s', 1 + (z'' - 1)) :|: s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(s'', 1 + (z' - 1)) :|: s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 + z }-> if_gcd(s2, 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(s', 1 + (z'' - 1)) :|: s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(s'', 1 + (z' - 1)) :|: s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: gcd after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' Computed SIZE bound using KoAT for: if_gcd after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 + z }-> if_gcd(s2, 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(s', 1 + (z'' - 1)) :|: s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(s'', 1 + (z' - 1)) :|: s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {gcd,if_gcd}, {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: ?, size: O(n^1) [z + z'] if_gcd: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: gcd after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2 Computed RUNTIME bound using KoAT for: if_gcd after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 + z }-> if_gcd(s2, 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(2, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> if_gcd(0, 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(s', 1 + (z'' - 1)) :|: s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(s'', 1 + (z' - 1)) :|: s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z', 0) :|: z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(z'', 0) :|: z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z') :|: z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z') :|: z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, z'') :|: z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(0, z'') :|: z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] ---------------------------------------- (55) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 2*z ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: ?, size: O(n^1) [2 + 2*z] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 651 + 2527*z + 1866*z^2 + 432*z^3 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> gcd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 0 }-> gcd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> if_gcd(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] ---------------------------------------- (61) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1304 + s17 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s18 :|: s16 >= 0, s16 <= 2 * x_1 + 2, s17 >= 0, s17 <= 2 * x_2 + 2, s18 >= 0, s18 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1304 + s20 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s21 :|: s19 >= 0, s19 <= 2 * x_1 + 2, s20 >= 0, s20 <= 2 * x_2 + 2, s21 >= 0, s21 <= s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1327 + 13*s22 + 4*s22*s23 + 2*s22^2 + 13*s23 + 2*s23^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s24 :|: s22 >= 0, s22 <= 2 * x_1 + 2, s23 >= 0, s23 <= 2 * x_2 + 2, s24 >= 0, s24 <= s22 + s23, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2147 + 58*s26 + 8*s26*s27 + 10*s26^2 + 58*s27 + 10*s27^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 + 2527*x_3 + 1866*x_3^2 + 432*x_3^3 }-> s28 :|: s25 >= 0, s25 <= 2 * x_1 + 2, s26 >= 0, s26 <= 2 * x_2 + 2, s27 >= 0, s27 <= 2 * x_3 + 2, s28 >= 0, s28 <= s26 + s27, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -442 + 91*z + 570*z^2 + 432*z^3 }-> 1 + s15 :|: s15 >= 0, s15 <= 2 * (z - 1) + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 1327 + 13*s36 + 4*s36*s37 + 2*s36^2 + 13*s37 + 2*s37^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s38 :|: s36 >= 0, s36 <= 2 * z + 2, s37 >= 0, s37 <= 2 * z' + 2, s38 >= 0, s38 <= s36 + s37, z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 2147 + 58*s40 + 8*s40*s41 + 10*s40^2 + 58*s41 + 10*s41^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 + 2527*z'' + 1866*z''^2 + 432*z''^3 }-> s42 :|: s39 >= 0, s39 <= 2 * z + 2, s40 >= 0, s40 <= 2 * z' + 2, s41 >= 0, s41 <= 2 * z'' + 2, s42 >= 0, s42 <= s40 + s41, z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 1304 + s30 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s31 :|: s29 >= 0, s29 <= 2 * z + 2, s30 >= 0, s30 <= 2 * z' + 2, s31 >= 0, s31 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 1304 + s34 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s35 :|: s33 >= 0, s33 <= 2 * z + 2, s34 >= 0, s34 <= 2 * z' + 2, s35 >= 0, s35 <= s33, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 651 + 2527*z + 1866*z^2 + 432*z^3 }-> 1 + s32 :|: s32 >= 0, s32 <= 2 * z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_if_gcd after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + 2*z' + 2*z'' ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1304 + s17 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s18 :|: s16 >= 0, s16 <= 2 * x_1 + 2, s17 >= 0, s17 <= 2 * x_2 + 2, s18 >= 0, s18 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1304 + s20 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s21 :|: s19 >= 0, s19 <= 2 * x_1 + 2, s20 >= 0, s20 <= 2 * x_2 + 2, s21 >= 0, s21 <= s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1327 + 13*s22 + 4*s22*s23 + 2*s22^2 + 13*s23 + 2*s23^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s24 :|: s22 >= 0, s22 <= 2 * x_1 + 2, s23 >= 0, s23 <= 2 * x_2 + 2, s24 >= 0, s24 <= s22 + s23, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2147 + 58*s26 + 8*s26*s27 + 10*s26^2 + 58*s27 + 10*s27^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 + 2527*x_3 + 1866*x_3^2 + 432*x_3^3 }-> s28 :|: s25 >= 0, s25 <= 2 * x_1 + 2, s26 >= 0, s26 <= 2 * x_2 + 2, s27 >= 0, s27 <= 2 * x_3 + 2, s28 >= 0, s28 <= s26 + s27, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -442 + 91*z + 570*z^2 + 432*z^3 }-> 1 + s15 :|: s15 >= 0, s15 <= 2 * (z - 1) + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 1327 + 13*s36 + 4*s36*s37 + 2*s36^2 + 13*s37 + 2*s37^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s38 :|: s36 >= 0, s36 <= 2 * z + 2, s37 >= 0, s37 <= 2 * z' + 2, s38 >= 0, s38 <= s36 + s37, z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 2147 + 58*s40 + 8*s40*s41 + 10*s40^2 + 58*s41 + 10*s41^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 + 2527*z'' + 1866*z''^2 + 432*z''^3 }-> s42 :|: s39 >= 0, s39 <= 2 * z + 2, s40 >= 0, s40 <= 2 * z' + 2, s41 >= 0, s41 <= 2 * z'' + 2, s42 >= 0, s42 <= s40 + s41, z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 1304 + s30 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s31 :|: s29 >= 0, s29 <= 2 * z + 2, s30 >= 0, s30 <= 2 * z' + 2, s31 >= 0, s31 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 1304 + s34 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s35 :|: s33 >= 0, s33 <= 2 * z + 2, s34 >= 0, s34 <= 2 * z' + 2, s35 >= 0, s35 <= s33, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 651 + 2527*z + 1866*z^2 + 432*z^3 }-> 1 + s32 :|: s32 >= 0, s32 <= 2 * z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_if_gcd}, {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] encode_if_gcd: runtime: ?, size: O(n^1) [4 + 2*z' + 2*z''] ---------------------------------------- (65) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_if_gcd after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 2491 + 2527*z + 1866*z^2 + 432*z^3 + 2755*z' + 32*z'*z'' + 1906*z'^2 + 432*z'^3 + 2755*z'' + 1906*z''^2 + 432*z''^3 ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1304 + s17 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s18 :|: s16 >= 0, s16 <= 2 * x_1 + 2, s17 >= 0, s17 <= 2 * x_2 + 2, s18 >= 0, s18 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1304 + s20 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s21 :|: s19 >= 0, s19 <= 2 * x_1 + 2, s20 >= 0, s20 <= 2 * x_2 + 2, s21 >= 0, s21 <= s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1327 + 13*s22 + 4*s22*s23 + 2*s22^2 + 13*s23 + 2*s23^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s24 :|: s22 >= 0, s22 <= 2 * x_1 + 2, s23 >= 0, s23 <= 2 * x_2 + 2, s24 >= 0, s24 <= s22 + s23, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2147 + 58*s26 + 8*s26*s27 + 10*s26^2 + 58*s27 + 10*s27^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 + 2527*x_3 + 1866*x_3^2 + 432*x_3^3 }-> s28 :|: s25 >= 0, s25 <= 2 * x_1 + 2, s26 >= 0, s26 <= 2 * x_2 + 2, s27 >= 0, s27 <= 2 * x_3 + 2, s28 >= 0, s28 <= s26 + s27, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -442 + 91*z + 570*z^2 + 432*z^3 }-> 1 + s15 :|: s15 >= 0, s15 <= 2 * (z - 1) + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 1327 + 13*s36 + 4*s36*s37 + 2*s36^2 + 13*s37 + 2*s37^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s38 :|: s36 >= 0, s36 <= 2 * z + 2, s37 >= 0, s37 <= 2 * z' + 2, s38 >= 0, s38 <= s36 + s37, z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 2147 + 58*s40 + 8*s40*s41 + 10*s40^2 + 58*s41 + 10*s41^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 + 2527*z'' + 1866*z''^2 + 432*z''^3 }-> s42 :|: s39 >= 0, s39 <= 2 * z + 2, s40 >= 0, s40 <= 2 * z' + 2, s41 >= 0, s41 <= 2 * z'' + 2, s42 >= 0, s42 <= s40 + s41, z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 1304 + s30 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s31 :|: s29 >= 0, s29 <= 2 * z + 2, s30 >= 0, s30 <= 2 * z' + 2, s31 >= 0, s31 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 1304 + s34 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s35 :|: s33 >= 0, s33 <= 2 * z + 2, s34 >= 0, s34 <= 2 * z' + 2, s35 >= 0, s35 <= s33, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 651 + 2527*z + 1866*z^2 + 432*z^3 }-> 1 + s32 :|: s32 >= 0, s32 <= 2 * z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] encode_if_gcd: runtime: O(n^3) [2491 + 2527*z + 1866*z^2 + 432*z^3 + 2755*z' + 32*z'*z'' + 1906*z'^2 + 432*z'^3 + 2755*z'' + 1906*z''^2 + 432*z''^3], size: O(n^1) [4 + 2*z' + 2*z''] ---------------------------------------- (67) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1304 + s17 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s18 :|: s16 >= 0, s16 <= 2 * x_1 + 2, s17 >= 0, s17 <= 2 * x_2 + 2, s18 >= 0, s18 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1304 + s20 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s21 :|: s19 >= 0, s19 <= 2 * x_1 + 2, s20 >= 0, s20 <= 2 * x_2 + 2, s21 >= 0, s21 <= s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1327 + 13*s22 + 4*s22*s23 + 2*s22^2 + 13*s23 + 2*s23^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s24 :|: s22 >= 0, s22 <= 2 * x_1 + 2, s23 >= 0, s23 <= 2 * x_2 + 2, s24 >= 0, s24 <= s22 + s23, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2147 + 58*s26 + 8*s26*s27 + 10*s26^2 + 58*s27 + 10*s27^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 + 2527*x_3 + 1866*x_3^2 + 432*x_3^3 }-> s28 :|: s25 >= 0, s25 <= 2 * x_1 + 2, s26 >= 0, s26 <= 2 * x_2 + 2, s27 >= 0, s27 <= 2 * x_3 + 2, s28 >= 0, s28 <= s26 + s27, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -442 + 91*z + 570*z^2 + 432*z^3 }-> 1 + s15 :|: s15 >= 0, s15 <= 2 * (z - 1) + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 1327 + 13*s36 + 4*s36*s37 + 2*s36^2 + 13*s37 + 2*s37^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s38 :|: s36 >= 0, s36 <= 2 * z + 2, s37 >= 0, s37 <= 2 * z' + 2, s38 >= 0, s38 <= s36 + s37, z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 2147 + 58*s40 + 8*s40*s41 + 10*s40^2 + 58*s41 + 10*s41^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 + 2527*z'' + 1866*z''^2 + 432*z''^3 }-> s42 :|: s39 >= 0, s39 <= 2 * z + 2, s40 >= 0, s40 <= 2 * z' + 2, s41 >= 0, s41 <= 2 * z'' + 2, s42 >= 0, s42 <= s40 + s41, z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 1304 + s30 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s31 :|: s29 >= 0, s29 <= 2 * z + 2, s30 >= 0, s30 <= 2 * z' + 2, s31 >= 0, s31 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 1304 + s34 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s35 :|: s33 >= 0, s33 <= 2 * z + 2, s34 >= 0, s34 <= 2 * z' + 2, s35 >= 0, s35 <= s33, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 651 + 2527*z + 1866*z^2 + 432*z^3 }-> 1 + s32 :|: s32 >= 0, s32 <= 2 * z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] encode_if_gcd: runtime: O(n^3) [2491 + 2527*z + 1866*z^2 + 432*z^3 + 2755*z' + 32*z'*z'' + 1906*z'^2 + 432*z'^3 + 2755*z'' + 1906*z''^2 + 432*z''^3], size: O(n^1) [4 + 2*z' + 2*z''] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_gcd after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + 2*z + 2*z' ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1304 + s17 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s18 :|: s16 >= 0, s16 <= 2 * x_1 + 2, s17 >= 0, s17 <= 2 * x_2 + 2, s18 >= 0, s18 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1304 + s20 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s21 :|: s19 >= 0, s19 <= 2 * x_1 + 2, s20 >= 0, s20 <= 2 * x_2 + 2, s21 >= 0, s21 <= s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1327 + 13*s22 + 4*s22*s23 + 2*s22^2 + 13*s23 + 2*s23^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s24 :|: s22 >= 0, s22 <= 2 * x_1 + 2, s23 >= 0, s23 <= 2 * x_2 + 2, s24 >= 0, s24 <= s22 + s23, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2147 + 58*s26 + 8*s26*s27 + 10*s26^2 + 58*s27 + 10*s27^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 + 2527*x_3 + 1866*x_3^2 + 432*x_3^3 }-> s28 :|: s25 >= 0, s25 <= 2 * x_1 + 2, s26 >= 0, s26 <= 2 * x_2 + 2, s27 >= 0, s27 <= 2 * x_3 + 2, s28 >= 0, s28 <= s26 + s27, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -442 + 91*z + 570*z^2 + 432*z^3 }-> 1 + s15 :|: s15 >= 0, s15 <= 2 * (z - 1) + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 1327 + 13*s36 + 4*s36*s37 + 2*s36^2 + 13*s37 + 2*s37^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s38 :|: s36 >= 0, s36 <= 2 * z + 2, s37 >= 0, s37 <= 2 * z' + 2, s38 >= 0, s38 <= s36 + s37, z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 2147 + 58*s40 + 8*s40*s41 + 10*s40^2 + 58*s41 + 10*s41^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 + 2527*z'' + 1866*z''^2 + 432*z''^3 }-> s42 :|: s39 >= 0, s39 <= 2 * z + 2, s40 >= 0, s40 <= 2 * z' + 2, s41 >= 0, s41 <= 2 * z'' + 2, s42 >= 0, s42 <= s40 + s41, z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 1304 + s30 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s31 :|: s29 >= 0, s29 <= 2 * z + 2, s30 >= 0, s30 <= 2 * z' + 2, s31 >= 0, s31 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 1304 + s34 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s35 :|: s33 >= 0, s33 <= 2 * z + 2, s34 >= 0, s34 <= 2 * z' + 2, s35 >= 0, s35 <= s33, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 651 + 2527*z + 1866*z^2 + 432*z^3 }-> 1 + s32 :|: s32 >= 0, s32 <= 2 * z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_gcd}, {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] encode_if_gcd: runtime: O(n^3) [2491 + 2527*z + 1866*z^2 + 432*z^3 + 2755*z' + 32*z'*z'' + 1906*z'^2 + 432*z'^3 + 2755*z'' + 1906*z''^2 + 432*z''^3], size: O(n^1) [4 + 2*z' + 2*z''] encode_gcd: runtime: ?, size: O(n^1) [4 + 2*z + 2*z'] ---------------------------------------- (71) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_gcd after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 1411 + 2585*z + 16*z*z' + 1874*z^2 + 432*z^3 + 2585*z' + 1874*z'^2 + 432*z'^3 ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1304 + s17 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s18 :|: s16 >= 0, s16 <= 2 * x_1 + 2, s17 >= 0, s17 <= 2 * x_2 + 2, s18 >= 0, s18 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1304 + s20 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s21 :|: s19 >= 0, s19 <= 2 * x_1 + 2, s20 >= 0, s20 <= 2 * x_2 + 2, s21 >= 0, s21 <= s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1327 + 13*s22 + 4*s22*s23 + 2*s22^2 + 13*s23 + 2*s23^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s24 :|: s22 >= 0, s22 <= 2 * x_1 + 2, s23 >= 0, s23 <= 2 * x_2 + 2, s24 >= 0, s24 <= s22 + s23, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2147 + 58*s26 + 8*s26*s27 + 10*s26^2 + 58*s27 + 10*s27^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 + 2527*x_3 + 1866*x_3^2 + 432*x_3^3 }-> s28 :|: s25 >= 0, s25 <= 2 * x_1 + 2, s26 >= 0, s26 <= 2 * x_2 + 2, s27 >= 0, s27 <= 2 * x_3 + 2, s28 >= 0, s28 <= s26 + s27, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -442 + 91*z + 570*z^2 + 432*z^3 }-> 1 + s15 :|: s15 >= 0, s15 <= 2 * (z - 1) + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 1327 + 13*s36 + 4*s36*s37 + 2*s36^2 + 13*s37 + 2*s37^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s38 :|: s36 >= 0, s36 <= 2 * z + 2, s37 >= 0, s37 <= 2 * z' + 2, s38 >= 0, s38 <= s36 + s37, z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 2147 + 58*s40 + 8*s40*s41 + 10*s40^2 + 58*s41 + 10*s41^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 + 2527*z'' + 1866*z''^2 + 432*z''^3 }-> s42 :|: s39 >= 0, s39 <= 2 * z + 2, s40 >= 0, s40 <= 2 * z' + 2, s41 >= 0, s41 <= 2 * z'' + 2, s42 >= 0, s42 <= s40 + s41, z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 1304 + s30 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s31 :|: s29 >= 0, s29 <= 2 * z + 2, s30 >= 0, s30 <= 2 * z' + 2, s31 >= 0, s31 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 1304 + s34 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s35 :|: s33 >= 0, s33 <= 2 * z + 2, s34 >= 0, s34 <= 2 * z' + 2, s35 >= 0, s35 <= s33, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 651 + 2527*z + 1866*z^2 + 432*z^3 }-> 1 + s32 :|: s32 >= 0, s32 <= 2 * z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] encode_if_gcd: runtime: O(n^3) [2491 + 2527*z + 1866*z^2 + 432*z^3 + 2755*z' + 32*z'*z'' + 1906*z'^2 + 432*z'^3 + 2755*z'' + 1906*z''^2 + 432*z''^3], size: O(n^1) [4 + 2*z' + 2*z''] encode_gcd: runtime: O(n^3) [1411 + 2585*z + 16*z*z' + 1874*z^2 + 432*z^3 + 2585*z' + 1874*z'^2 + 432*z'^3], size: O(n^1) [4 + 2*z + 2*z'] ---------------------------------------- (73) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1304 + s17 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s18 :|: s16 >= 0, s16 <= 2 * x_1 + 2, s17 >= 0, s17 <= 2 * x_2 + 2, s18 >= 0, s18 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1304 + s20 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s21 :|: s19 >= 0, s19 <= 2 * x_1 + 2, s20 >= 0, s20 <= 2 * x_2 + 2, s21 >= 0, s21 <= s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1327 + 13*s22 + 4*s22*s23 + 2*s22^2 + 13*s23 + 2*s23^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s24 :|: s22 >= 0, s22 <= 2 * x_1 + 2, s23 >= 0, s23 <= 2 * x_2 + 2, s24 >= 0, s24 <= s22 + s23, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2147 + 58*s26 + 8*s26*s27 + 10*s26^2 + 58*s27 + 10*s27^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 + 2527*x_3 + 1866*x_3^2 + 432*x_3^3 }-> s28 :|: s25 >= 0, s25 <= 2 * x_1 + 2, s26 >= 0, s26 <= 2 * x_2 + 2, s27 >= 0, s27 <= 2 * x_3 + 2, s28 >= 0, s28 <= s26 + s27, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -442 + 91*z + 570*z^2 + 432*z^3 }-> 1 + s15 :|: s15 >= 0, s15 <= 2 * (z - 1) + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 1327 + 13*s36 + 4*s36*s37 + 2*s36^2 + 13*s37 + 2*s37^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s38 :|: s36 >= 0, s36 <= 2 * z + 2, s37 >= 0, s37 <= 2 * z' + 2, s38 >= 0, s38 <= s36 + s37, z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 2147 + 58*s40 + 8*s40*s41 + 10*s40^2 + 58*s41 + 10*s41^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 + 2527*z'' + 1866*z''^2 + 432*z''^3 }-> s42 :|: s39 >= 0, s39 <= 2 * z + 2, s40 >= 0, s40 <= 2 * z' + 2, s41 >= 0, s41 <= 2 * z'' + 2, s42 >= 0, s42 <= s40 + s41, z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 1304 + s30 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s31 :|: s29 >= 0, s29 <= 2 * z + 2, s30 >= 0, s30 <= 2 * z' + 2, s31 >= 0, s31 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 1304 + s34 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s35 :|: s33 >= 0, s33 <= 2 * z + 2, s34 >= 0, s34 <= 2 * z' + 2, s35 >= 0, s35 <= s33, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 651 + 2527*z + 1866*z^2 + 432*z^3 }-> 1 + s32 :|: s32 >= 0, s32 <= 2 * z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] encode_if_gcd: runtime: O(n^3) [2491 + 2527*z + 1866*z^2 + 432*z^3 + 2755*z' + 32*z'*z'' + 1906*z'^2 + 432*z'^3 + 2755*z'' + 1906*z''^2 + 432*z''^3], size: O(n^1) [4 + 2*z' + 2*z''] encode_gcd: runtime: O(n^3) [1411 + 2585*z + 16*z*z' + 1874*z^2 + 432*z^3 + 2585*z' + 1874*z'^2 + 432*z'^3], size: O(n^1) [4 + 2*z + 2*z'] ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 2*z ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1304 + s17 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s18 :|: s16 >= 0, s16 <= 2 * x_1 + 2, s17 >= 0, s17 <= 2 * x_2 + 2, s18 >= 0, s18 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1304 + s20 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s21 :|: s19 >= 0, s19 <= 2 * x_1 + 2, s20 >= 0, s20 <= 2 * x_2 + 2, s21 >= 0, s21 <= s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1327 + 13*s22 + 4*s22*s23 + 2*s22^2 + 13*s23 + 2*s23^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s24 :|: s22 >= 0, s22 <= 2 * x_1 + 2, s23 >= 0, s23 <= 2 * x_2 + 2, s24 >= 0, s24 <= s22 + s23, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2147 + 58*s26 + 8*s26*s27 + 10*s26^2 + 58*s27 + 10*s27^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 + 2527*x_3 + 1866*x_3^2 + 432*x_3^3 }-> s28 :|: s25 >= 0, s25 <= 2 * x_1 + 2, s26 >= 0, s26 <= 2 * x_2 + 2, s27 >= 0, s27 <= 2 * x_3 + 2, s28 >= 0, s28 <= s26 + s27, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -442 + 91*z + 570*z^2 + 432*z^3 }-> 1 + s15 :|: s15 >= 0, s15 <= 2 * (z - 1) + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 1327 + 13*s36 + 4*s36*s37 + 2*s36^2 + 13*s37 + 2*s37^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s38 :|: s36 >= 0, s36 <= 2 * z + 2, s37 >= 0, s37 <= 2 * z' + 2, s38 >= 0, s38 <= s36 + s37, z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 2147 + 58*s40 + 8*s40*s41 + 10*s40^2 + 58*s41 + 10*s41^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 + 2527*z'' + 1866*z''^2 + 432*z''^3 }-> s42 :|: s39 >= 0, s39 <= 2 * z + 2, s40 >= 0, s40 <= 2 * z' + 2, s41 >= 0, s41 <= 2 * z'' + 2, s42 >= 0, s42 <= s40 + s41, z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 1304 + s30 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s31 :|: s29 >= 0, s29 <= 2 * z + 2, s30 >= 0, s30 <= 2 * z' + 2, s31 >= 0, s31 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 1304 + s34 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s35 :|: s33 >= 0, s33 <= 2 * z + 2, s34 >= 0, s34 <= 2 * z' + 2, s35 >= 0, s35 <= s33, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 651 + 2527*z + 1866*z^2 + 432*z^3 }-> 1 + s32 :|: s32 >= 0, s32 <= 2 * z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_minus}, {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] encode_if_gcd: runtime: O(n^3) [2491 + 2527*z + 1866*z^2 + 432*z^3 + 2755*z' + 32*z'*z'' + 1906*z'^2 + 432*z'^3 + 2755*z'' + 1906*z''^2 + 432*z''^3], size: O(n^1) [4 + 2*z' + 2*z''] encode_gcd: runtime: O(n^3) [1411 + 2585*z + 16*z*z' + 1874*z^2 + 432*z^3 + 2585*z' + 1874*z'^2 + 432*z'^3], size: O(n^1) [4 + 2*z + 2*z'] encode_minus: runtime: ?, size: O(n^1) [2 + 2*z] ---------------------------------------- (77) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_minus after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 1306 + 2527*z + 1866*z^2 + 432*z^3 + 2529*z' + 1866*z'^2 + 432*z'^3 ---------------------------------------- (78) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1304 + s17 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s18 :|: s16 >= 0, s16 <= 2 * x_1 + 2, s17 >= 0, s17 <= 2 * x_2 + 2, s18 >= 0, s18 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1304 + s20 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s21 :|: s19 >= 0, s19 <= 2 * x_1 + 2, s20 >= 0, s20 <= 2 * x_2 + 2, s21 >= 0, s21 <= s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1327 + 13*s22 + 4*s22*s23 + 2*s22^2 + 13*s23 + 2*s23^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s24 :|: s22 >= 0, s22 <= 2 * x_1 + 2, s23 >= 0, s23 <= 2 * x_2 + 2, s24 >= 0, s24 <= s22 + s23, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2147 + 58*s26 + 8*s26*s27 + 10*s26^2 + 58*s27 + 10*s27^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 + 2527*x_3 + 1866*x_3^2 + 432*x_3^3 }-> s28 :|: s25 >= 0, s25 <= 2 * x_1 + 2, s26 >= 0, s26 <= 2 * x_2 + 2, s27 >= 0, s27 <= 2 * x_3 + 2, s28 >= 0, s28 <= s26 + s27, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -442 + 91*z + 570*z^2 + 432*z^3 }-> 1 + s15 :|: s15 >= 0, s15 <= 2 * (z - 1) + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 1327 + 13*s36 + 4*s36*s37 + 2*s36^2 + 13*s37 + 2*s37^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s38 :|: s36 >= 0, s36 <= 2 * z + 2, s37 >= 0, s37 <= 2 * z' + 2, s38 >= 0, s38 <= s36 + s37, z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 2147 + 58*s40 + 8*s40*s41 + 10*s40^2 + 58*s41 + 10*s41^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 + 2527*z'' + 1866*z''^2 + 432*z''^3 }-> s42 :|: s39 >= 0, s39 <= 2 * z + 2, s40 >= 0, s40 <= 2 * z' + 2, s41 >= 0, s41 <= 2 * z'' + 2, s42 >= 0, s42 <= s40 + s41, z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 1304 + s30 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s31 :|: s29 >= 0, s29 <= 2 * z + 2, s30 >= 0, s30 <= 2 * z' + 2, s31 >= 0, s31 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 1304 + s34 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s35 :|: s33 >= 0, s33 <= 2 * z + 2, s34 >= 0, s34 <= 2 * z' + 2, s35 >= 0, s35 <= s33, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 651 + 2527*z + 1866*z^2 + 432*z^3 }-> 1 + s32 :|: s32 >= 0, s32 <= 2 * z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] encode_if_gcd: runtime: O(n^3) [2491 + 2527*z + 1866*z^2 + 432*z^3 + 2755*z' + 32*z'*z'' + 1906*z'^2 + 432*z'^3 + 2755*z'' + 1906*z''^2 + 432*z''^3], size: O(n^1) [4 + 2*z' + 2*z''] encode_gcd: runtime: O(n^3) [1411 + 2585*z + 16*z*z' + 1874*z^2 + 432*z^3 + 2585*z' + 1874*z'^2 + 432*z'^3], size: O(n^1) [4 + 2*z + 2*z'] encode_minus: runtime: O(n^3) [1306 + 2527*z + 1866*z^2 + 432*z^3 + 2529*z' + 1866*z'^2 + 432*z'^3], size: O(n^1) [2 + 2*z] ---------------------------------------- (79) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (80) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1304 + s17 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s18 :|: s16 >= 0, s16 <= 2 * x_1 + 2, s17 >= 0, s17 <= 2 * x_2 + 2, s18 >= 0, s18 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1304 + s20 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s21 :|: s19 >= 0, s19 <= 2 * x_1 + 2, s20 >= 0, s20 <= 2 * x_2 + 2, s21 >= 0, s21 <= s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1327 + 13*s22 + 4*s22*s23 + 2*s22^2 + 13*s23 + 2*s23^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s24 :|: s22 >= 0, s22 <= 2 * x_1 + 2, s23 >= 0, s23 <= 2 * x_2 + 2, s24 >= 0, s24 <= s22 + s23, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2147 + 58*s26 + 8*s26*s27 + 10*s26^2 + 58*s27 + 10*s27^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 + 2527*x_3 + 1866*x_3^2 + 432*x_3^3 }-> s28 :|: s25 >= 0, s25 <= 2 * x_1 + 2, s26 >= 0, s26 <= 2 * x_2 + 2, s27 >= 0, s27 <= 2 * x_3 + 2, s28 >= 0, s28 <= s26 + s27, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -442 + 91*z + 570*z^2 + 432*z^3 }-> 1 + s15 :|: s15 >= 0, s15 <= 2 * (z - 1) + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 1327 + 13*s36 + 4*s36*s37 + 2*s36^2 + 13*s37 + 2*s37^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s38 :|: s36 >= 0, s36 <= 2 * z + 2, s37 >= 0, s37 <= 2 * z' + 2, s38 >= 0, s38 <= s36 + s37, z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 2147 + 58*s40 + 8*s40*s41 + 10*s40^2 + 58*s41 + 10*s41^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 + 2527*z'' + 1866*z''^2 + 432*z''^3 }-> s42 :|: s39 >= 0, s39 <= 2 * z + 2, s40 >= 0, s40 <= 2 * z' + 2, s41 >= 0, s41 <= 2 * z'' + 2, s42 >= 0, s42 <= s40 + s41, z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 1304 + s30 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s31 :|: s29 >= 0, s29 <= 2 * z + 2, s30 >= 0, s30 <= 2 * z' + 2, s31 >= 0, s31 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 1304 + s34 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s35 :|: s33 >= 0, s33 <= 2 * z + 2, s34 >= 0, s34 <= 2 * z' + 2, s35 >= 0, s35 <= s33, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 651 + 2527*z + 1866*z^2 + 432*z^3 }-> 1 + s32 :|: s32 >= 0, s32 <= 2 * z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] encode_if_gcd: runtime: O(n^3) [2491 + 2527*z + 1866*z^2 + 432*z^3 + 2755*z' + 32*z'*z'' + 1906*z'^2 + 432*z'^3 + 2755*z'' + 1906*z''^2 + 432*z''^3], size: O(n^1) [4 + 2*z' + 2*z''] encode_gcd: runtime: O(n^3) [1411 + 2585*z + 16*z*z' + 1874*z^2 + 432*z^3 + 2585*z' + 1874*z'^2 + 432*z'^3], size: O(n^1) [4 + 2*z + 2*z'] encode_minus: runtime: O(n^3) [1306 + 2527*z + 1866*z^2 + 432*z^3 + 2529*z' + 1866*z'^2 + 432*z'^3], size: O(n^1) [2 + 2*z] ---------------------------------------- (81) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_le after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (82) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1304 + s17 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s18 :|: s16 >= 0, s16 <= 2 * x_1 + 2, s17 >= 0, s17 <= 2 * x_2 + 2, s18 >= 0, s18 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1304 + s20 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s21 :|: s19 >= 0, s19 <= 2 * x_1 + 2, s20 >= 0, s20 <= 2 * x_2 + 2, s21 >= 0, s21 <= s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1327 + 13*s22 + 4*s22*s23 + 2*s22^2 + 13*s23 + 2*s23^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s24 :|: s22 >= 0, s22 <= 2 * x_1 + 2, s23 >= 0, s23 <= 2 * x_2 + 2, s24 >= 0, s24 <= s22 + s23, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2147 + 58*s26 + 8*s26*s27 + 10*s26^2 + 58*s27 + 10*s27^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 + 2527*x_3 + 1866*x_3^2 + 432*x_3^3 }-> s28 :|: s25 >= 0, s25 <= 2 * x_1 + 2, s26 >= 0, s26 <= 2 * x_2 + 2, s27 >= 0, s27 <= 2 * x_3 + 2, s28 >= 0, s28 <= s26 + s27, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -442 + 91*z + 570*z^2 + 432*z^3 }-> 1 + s15 :|: s15 >= 0, s15 <= 2 * (z - 1) + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 1327 + 13*s36 + 4*s36*s37 + 2*s36^2 + 13*s37 + 2*s37^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s38 :|: s36 >= 0, s36 <= 2 * z + 2, s37 >= 0, s37 <= 2 * z' + 2, s38 >= 0, s38 <= s36 + s37, z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 2147 + 58*s40 + 8*s40*s41 + 10*s40^2 + 58*s41 + 10*s41^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 + 2527*z'' + 1866*z''^2 + 432*z''^3 }-> s42 :|: s39 >= 0, s39 <= 2 * z + 2, s40 >= 0, s40 <= 2 * z' + 2, s41 >= 0, s41 <= 2 * z'' + 2, s42 >= 0, s42 <= s40 + s41, z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 1304 + s30 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s31 :|: s29 >= 0, s29 <= 2 * z + 2, s30 >= 0, s30 <= 2 * z' + 2, s31 >= 0, s31 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 1304 + s34 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s35 :|: s33 >= 0, s33 <= 2 * z + 2, s34 >= 0, s34 <= 2 * z' + 2, s35 >= 0, s35 <= s33, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 651 + 2527*z + 1866*z^2 + 432*z^3 }-> 1 + s32 :|: s32 >= 0, s32 <= 2 * z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_le}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] encode_if_gcd: runtime: O(n^3) [2491 + 2527*z + 1866*z^2 + 432*z^3 + 2755*z' + 32*z'*z'' + 1906*z'^2 + 432*z'^3 + 2755*z'' + 1906*z''^2 + 432*z''^3], size: O(n^1) [4 + 2*z' + 2*z''] encode_gcd: runtime: O(n^3) [1411 + 2585*z + 16*z*z' + 1874*z^2 + 432*z^3 + 2585*z' + 1874*z'^2 + 432*z'^3], size: O(n^1) [4 + 2*z + 2*z'] encode_minus: runtime: O(n^3) [1306 + 2527*z + 1866*z^2 + 432*z^3 + 2529*z' + 1866*z'^2 + 432*z'^3], size: O(n^1) [2 + 2*z] encode_le: runtime: ?, size: O(1) [2] ---------------------------------------- (83) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_le after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 1306 + 2527*z + 1866*z^2 + 432*z^3 + 2529*z' + 1866*z'^2 + 432*z'^3 ---------------------------------------- (84) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1304 + s17 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s18 :|: s16 >= 0, s16 <= 2 * x_1 + 2, s17 >= 0, s17 <= 2 * x_2 + 2, s18 >= 0, s18 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1304 + s20 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s21 :|: s19 >= 0, s19 <= 2 * x_1 + 2, s20 >= 0, s20 <= 2 * x_2 + 2, s21 >= 0, s21 <= s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1327 + 13*s22 + 4*s22*s23 + 2*s22^2 + 13*s23 + 2*s23^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s24 :|: s22 >= 0, s22 <= 2 * x_1 + 2, s23 >= 0, s23 <= 2 * x_2 + 2, s24 >= 0, s24 <= s22 + s23, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2147 + 58*s26 + 8*s26*s27 + 10*s26^2 + 58*s27 + 10*s27^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 + 2527*x_3 + 1866*x_3^2 + 432*x_3^3 }-> s28 :|: s25 >= 0, s25 <= 2 * x_1 + 2, s26 >= 0, s26 <= 2 * x_2 + 2, s27 >= 0, s27 <= 2 * x_3 + 2, s28 >= 0, s28 <= s26 + s27, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -442 + 91*z + 570*z^2 + 432*z^3 }-> 1 + s15 :|: s15 >= 0, s15 <= 2 * (z - 1) + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 1327 + 13*s36 + 4*s36*s37 + 2*s36^2 + 13*s37 + 2*s37^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s38 :|: s36 >= 0, s36 <= 2 * z + 2, s37 >= 0, s37 <= 2 * z' + 2, s38 >= 0, s38 <= s36 + s37, z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 2147 + 58*s40 + 8*s40*s41 + 10*s40^2 + 58*s41 + 10*s41^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 + 2527*z'' + 1866*z''^2 + 432*z''^3 }-> s42 :|: s39 >= 0, s39 <= 2 * z + 2, s40 >= 0, s40 <= 2 * z' + 2, s41 >= 0, s41 <= 2 * z'' + 2, s42 >= 0, s42 <= s40 + s41, z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 1304 + s30 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s31 :|: s29 >= 0, s29 <= 2 * z + 2, s30 >= 0, s30 <= 2 * z' + 2, s31 >= 0, s31 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 1304 + s34 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s35 :|: s33 >= 0, s33 <= 2 * z + 2, s34 >= 0, s34 <= 2 * z' + 2, s35 >= 0, s35 <= s33, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 651 + 2527*z + 1866*z^2 + 432*z^3 }-> 1 + s32 :|: s32 >= 0, s32 <= 2 * z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] encode_if_gcd: runtime: O(n^3) [2491 + 2527*z + 1866*z^2 + 432*z^3 + 2755*z' + 32*z'*z'' + 1906*z'^2 + 432*z'^3 + 2755*z'' + 1906*z''^2 + 432*z''^3], size: O(n^1) [4 + 2*z' + 2*z''] encode_gcd: runtime: O(n^3) [1411 + 2585*z + 16*z*z' + 1874*z^2 + 432*z^3 + 2585*z' + 1874*z'^2 + 432*z'^3], size: O(n^1) [4 + 2*z + 2*z'] encode_minus: runtime: O(n^3) [1306 + 2527*z + 1866*z^2 + 432*z^3 + 2529*z' + 1866*z'^2 + 432*z'^3], size: O(n^1) [2 + 2*z] encode_le: runtime: O(n^3) [1306 + 2527*z + 1866*z^2 + 432*z^3 + 2529*z' + 1866*z'^2 + 432*z'^3], size: O(1) [2] ---------------------------------------- (85) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (86) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1304 + s17 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s18 :|: s16 >= 0, s16 <= 2 * x_1 + 2, s17 >= 0, s17 <= 2 * x_2 + 2, s18 >= 0, s18 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1304 + s20 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s21 :|: s19 >= 0, s19 <= 2 * x_1 + 2, s20 >= 0, s20 <= 2 * x_2 + 2, s21 >= 0, s21 <= s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1327 + 13*s22 + 4*s22*s23 + 2*s22^2 + 13*s23 + 2*s23^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s24 :|: s22 >= 0, s22 <= 2 * x_1 + 2, s23 >= 0, s23 <= 2 * x_2 + 2, s24 >= 0, s24 <= s22 + s23, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2147 + 58*s26 + 8*s26*s27 + 10*s26^2 + 58*s27 + 10*s27^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 + 2527*x_3 + 1866*x_3^2 + 432*x_3^3 }-> s28 :|: s25 >= 0, s25 <= 2 * x_1 + 2, s26 >= 0, s26 <= 2 * x_2 + 2, s27 >= 0, s27 <= 2 * x_3 + 2, s28 >= 0, s28 <= s26 + s27, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -442 + 91*z + 570*z^2 + 432*z^3 }-> 1 + s15 :|: s15 >= 0, s15 <= 2 * (z - 1) + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 1327 + 13*s36 + 4*s36*s37 + 2*s36^2 + 13*s37 + 2*s37^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s38 :|: s36 >= 0, s36 <= 2 * z + 2, s37 >= 0, s37 <= 2 * z' + 2, s38 >= 0, s38 <= s36 + s37, z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 2147 + 58*s40 + 8*s40*s41 + 10*s40^2 + 58*s41 + 10*s41^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 + 2527*z'' + 1866*z''^2 + 432*z''^3 }-> s42 :|: s39 >= 0, s39 <= 2 * z + 2, s40 >= 0, s40 <= 2 * z' + 2, s41 >= 0, s41 <= 2 * z'' + 2, s42 >= 0, s42 <= s40 + s41, z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 1304 + s30 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s31 :|: s29 >= 0, s29 <= 2 * z + 2, s30 >= 0, s30 <= 2 * z' + 2, s31 >= 0, s31 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 1304 + s34 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s35 :|: s33 >= 0, s33 <= 2 * z + 2, s34 >= 0, s34 <= 2 * z' + 2, s35 >= 0, s35 <= s33, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 651 + 2527*z + 1866*z^2 + 432*z^3 }-> 1 + s32 :|: s32 >= 0, s32 <= 2 * z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] encode_if_gcd: runtime: O(n^3) [2491 + 2527*z + 1866*z^2 + 432*z^3 + 2755*z' + 32*z'*z'' + 1906*z'^2 + 432*z'^3 + 2755*z'' + 1906*z''^2 + 432*z''^3], size: O(n^1) [4 + 2*z' + 2*z''] encode_gcd: runtime: O(n^3) [1411 + 2585*z + 16*z*z' + 1874*z^2 + 432*z^3 + 2585*z' + 1874*z'^2 + 432*z'^3], size: O(n^1) [4 + 2*z + 2*z'] encode_minus: runtime: O(n^3) [1306 + 2527*z + 1866*z^2 + 432*z^3 + 2529*z' + 1866*z'^2 + 432*z'^3], size: O(n^1) [2 + 2*z] encode_le: runtime: O(n^3) [1306 + 2527*z + 1866*z^2 + 432*z^3 + 2529*z' + 1866*z'^2 + 432*z'^3], size: O(1) [2] ---------------------------------------- (87) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 2*z ---------------------------------------- (88) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1304 + s17 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s18 :|: s16 >= 0, s16 <= 2 * x_1 + 2, s17 >= 0, s17 <= 2 * x_2 + 2, s18 >= 0, s18 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1304 + s20 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s21 :|: s19 >= 0, s19 <= 2 * x_1 + 2, s20 >= 0, s20 <= 2 * x_2 + 2, s21 >= 0, s21 <= s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1327 + 13*s22 + 4*s22*s23 + 2*s22^2 + 13*s23 + 2*s23^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s24 :|: s22 >= 0, s22 <= 2 * x_1 + 2, s23 >= 0, s23 <= 2 * x_2 + 2, s24 >= 0, s24 <= s22 + s23, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2147 + 58*s26 + 8*s26*s27 + 10*s26^2 + 58*s27 + 10*s27^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 + 2527*x_3 + 1866*x_3^2 + 432*x_3^3 }-> s28 :|: s25 >= 0, s25 <= 2 * x_1 + 2, s26 >= 0, s26 <= 2 * x_2 + 2, s27 >= 0, s27 <= 2 * x_3 + 2, s28 >= 0, s28 <= s26 + s27, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -442 + 91*z + 570*z^2 + 432*z^3 }-> 1 + s15 :|: s15 >= 0, s15 <= 2 * (z - 1) + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 1327 + 13*s36 + 4*s36*s37 + 2*s36^2 + 13*s37 + 2*s37^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s38 :|: s36 >= 0, s36 <= 2 * z + 2, s37 >= 0, s37 <= 2 * z' + 2, s38 >= 0, s38 <= s36 + s37, z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 2147 + 58*s40 + 8*s40*s41 + 10*s40^2 + 58*s41 + 10*s41^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 + 2527*z'' + 1866*z''^2 + 432*z''^3 }-> s42 :|: s39 >= 0, s39 <= 2 * z + 2, s40 >= 0, s40 <= 2 * z' + 2, s41 >= 0, s41 <= 2 * z'' + 2, s42 >= 0, s42 <= s40 + s41, z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 1304 + s30 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s31 :|: s29 >= 0, s29 <= 2 * z + 2, s30 >= 0, s30 <= 2 * z' + 2, s31 >= 0, s31 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 1304 + s34 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s35 :|: s33 >= 0, s33 <= 2 * z + 2, s34 >= 0, s34 <= 2 * z' + 2, s35 >= 0, s35 <= s33, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 651 + 2527*z + 1866*z^2 + 432*z^3 }-> 1 + s32 :|: s32 >= 0, s32 <= 2 * z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] encode_if_gcd: runtime: O(n^3) [2491 + 2527*z + 1866*z^2 + 432*z^3 + 2755*z' + 32*z'*z'' + 1906*z'^2 + 432*z'^3 + 2755*z'' + 1906*z''^2 + 432*z''^3], size: O(n^1) [4 + 2*z' + 2*z''] encode_gcd: runtime: O(n^3) [1411 + 2585*z + 16*z*z' + 1874*z^2 + 432*z^3 + 2585*z' + 1874*z'^2 + 432*z'^3], size: O(n^1) [4 + 2*z + 2*z'] encode_minus: runtime: O(n^3) [1306 + 2527*z + 1866*z^2 + 432*z^3 + 2529*z' + 1866*z'^2 + 432*z'^3], size: O(n^1) [2 + 2*z] encode_le: runtime: O(n^3) [1306 + 2527*z + 1866*z^2 + 432*z^3 + 2529*z' + 1866*z'^2 + 432*z'^3], size: O(1) [2] encode_s: runtime: ?, size: O(n^1) [3 + 2*z] ---------------------------------------- (89) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 651 + 2527*z + 1866*z^2 + 432*z^3 ---------------------------------------- (90) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1304 + s17 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s18 :|: s16 >= 0, s16 <= 2 * x_1 + 2, s17 >= 0, s17 <= 2 * x_2 + 2, s18 >= 0, s18 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1304 + s20 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s21 :|: s19 >= 0, s19 <= 2 * x_1 + 2, s20 >= 0, s20 <= 2 * x_2 + 2, s21 >= 0, s21 <= s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1327 + 13*s22 + 4*s22*s23 + 2*s22^2 + 13*s23 + 2*s23^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 }-> s24 :|: s22 >= 0, s22 <= 2 * x_1 + 2, s23 >= 0, s23 <= 2 * x_2 + 2, s24 >= 0, s24 <= s22 + s23, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2147 + 58*s26 + 8*s26*s27 + 10*s26^2 + 58*s27 + 10*s27^2 + 2527*x_1 + 1866*x_1^2 + 432*x_1^3 + 2527*x_2 + 1866*x_2^2 + 432*x_2^3 + 2527*x_3 + 1866*x_3^2 + 432*x_3^3 }-> s28 :|: s25 >= 0, s25 <= 2 * x_1 + 2, s26 >= 0, s26 <= 2 * x_2 + 2, s27 >= 0, s27 <= 2 * x_3 + 2, s28 >= 0, s28 <= s26 + s27, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -442 + 91*z + 570*z^2 + 432*z^3 }-> 1 + s15 :|: s15 >= 0, s15 <= 2 * (z - 1) + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_gcd(z, z') -{ 1327 + 13*s36 + 4*s36*s37 + 2*s36^2 + 13*s37 + 2*s37^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s38 :|: s36 >= 0, s36 <= 2 * z + 2, s37 >= 0, s37 <= 2 * z' + 2, s38 >= 0, s38 <= s36 + s37, z >= 0, z' >= 0 encode_gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 2147 + 58*s40 + 8*s40*s41 + 10*s40^2 + 58*s41 + 10*s41^2 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 + 2527*z'' + 1866*z''^2 + 432*z''^3 }-> s42 :|: s39 >= 0, s39 <= 2 * z + 2, s40 >= 0, s40 <= 2 * z' + 2, s41 >= 0, s41 <= 2 * z'' + 2, s42 >= 0, s42 <= s40 + s41, z >= 0, z'' >= 0, z' >= 0 encode_if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 1304 + s30 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s31 :|: s29 >= 0, s29 <= 2 * z + 2, s30 >= 0, s30 <= 2 * z' + 2, s31 >= 0, s31 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 1304 + s34 + 2527*z + 1866*z^2 + 432*z^3 + 2527*z' + 1866*z'^2 + 432*z'^3 }-> s35 :|: s33 >= 0, s33 <= 2 * z + 2, s34 >= 0, s34 <= 2 * z' + 2, s35 >= 0, s35 <= s33, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 651 + 2527*z + 1866*z^2 + 432*z^3 }-> 1 + s32 :|: s32 >= 0, s32 <= 2 * z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: gcd(z, z') -{ 264 + 66*z + 10*z^2 }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + (1 + 0), z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 264 + 66*z' + 10*z'^2 }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + (1 + (1 + (z' - 2))), z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 196 + 59*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s5 :|: s5 >= 0, s5 <= 1 + (1 + (z - 2)) + (1 + (1 + (z' - 2))), s2 >= 0, s2 <= 2, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 195 + 58*z + 8*z*z' + 10*z^2 + 58*z' + 10*z'^2 }-> s6 :|: s6 >= 0, s6 <= 1 + (z - 1) + (1 + (z' - 1)), z - 1 >= 0, z' - 1 >= 0 gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 26 + 13*z'' + 2*z''^2 }-> s10 :|: s10 >= 0, s10 <= 0 + z'', z = 2, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s11 :|: s11 >= 0, s11 <= z'' + 0, z = 1, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s12 :|: s12 >= 0, s12 <= 0 + z', z'' = 0, z = 1, z' >= 0 if_gcd(z, z', z'') -{ 28 + 13*s'' + 4*s''*z' + 2*s''^2 + 14*z' + 2*z'^2 }-> s13 :|: s13 >= 0, s13 <= s'' + (1 + (z' - 1)), s'' >= 0, s'' <= z'' - 1, z' - 1 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 26 + 13*z' + 2*z'^2 }-> s14 :|: s14 >= 0, s14 <= 0 + z', z = 1, z' >= 0, z'' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z' + 2*z'^2 }-> s7 :|: s7 >= 0, s7 <= z' + 0, z = 2, z'' = 0, z' >= 0 if_gcd(z, z', z'') -{ 27 + 13*z'' + 2*z''^2 }-> s8 :|: s8 >= 0, s8 <= 0 + z'', z = 2, z'' >= 0, z' = 0 if_gcd(z, z', z'') -{ 28 + 13*s' + 4*s'*z'' + 2*s'^2 + 14*z'' + 2*z''^2 }-> s9 :|: s9 >= 0, s9 <= s' + (1 + (z'' - 1)), s' >= 0, s' <= z' - 1, z = 2, z' - 1 >= 0, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 le(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 2, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] gcd: runtime: O(n^2) [25 + 13*z + 4*z*z' + 2*z^2 + 13*z' + 2*z'^2], size: O(n^1) [z + z'] if_gcd: runtime: O(n^2) [194 + 58*z' + 8*z'*z'' + 10*z'^2 + 58*z'' + 10*z''^2], size: O(n^1) [z' + z''] encArg: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [2 + 2*z] encode_if_gcd: runtime: O(n^3) [2491 + 2527*z + 1866*z^2 + 432*z^3 + 2755*z' + 32*z'*z'' + 1906*z'^2 + 432*z'^3 + 2755*z'' + 1906*z''^2 + 432*z''^3], size: O(n^1) [4 + 2*z' + 2*z''] encode_gcd: runtime: O(n^3) [1411 + 2585*z + 16*z*z' + 1874*z^2 + 432*z^3 + 2585*z' + 1874*z'^2 + 432*z'^3], size: O(n^1) [4 + 2*z + 2*z'] encode_minus: runtime: O(n^3) [1306 + 2527*z + 1866*z^2 + 432*z^3 + 2529*z' + 1866*z'^2 + 432*z'^3], size: O(n^1) [2 + 2*z] encode_le: runtime: O(n^3) [1306 + 2527*z + 1866*z^2 + 432*z^3 + 2529*z' + 1866*z'^2 + 432*z'^3], size: O(1) [2] encode_s: runtime: O(n^3) [651 + 2527*z + 1866*z^2 + 432*z^3], size: O(n^1) [3 + 2*z] ---------------------------------------- (91) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (92) BOUNDS(1, n^3) ---------------------------------------- (93) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (94) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(0, x) -> 0 minus(s(x), s(y)) -> minus(x, y) gcd(0, y) -> y gcd(s(x), 0) -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, x, y) -> gcd(minus(x, y), y) if_gcd(false, x, y) -> gcd(minus(y, x), x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_gcd(x_1, x_2)) -> gcd(encArg(x_1), encArg(x_2)) encArg(cons_if_gcd(x_1, x_2, x_3)) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_gcd(x_1, x_2) -> gcd(encArg(x_1), encArg(x_2)) encode_if_gcd(x_1, x_2, x_3) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (95) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence minus(s(x), s(y)) ->^+ minus(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (96) Complex Obligation (BEST) ---------------------------------------- (97) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(0, x) -> 0 minus(s(x), s(y)) -> minus(x, y) gcd(0, y) -> y gcd(s(x), 0) -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, x, y) -> gcd(minus(x, y), y) if_gcd(false, x, y) -> gcd(minus(y, x), x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_gcd(x_1, x_2)) -> gcd(encArg(x_1), encArg(x_2)) encArg(cons_if_gcd(x_1, x_2, x_3)) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_gcd(x_1, x_2) -> gcd(encArg(x_1), encArg(x_2)) encode_if_gcd(x_1, x_2, x_3) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (98) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (99) BOUNDS(n^1, INF) ---------------------------------------- (100) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(0, x) -> 0 minus(s(x), s(y)) -> minus(x, y) gcd(0, y) -> y gcd(s(x), 0) -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, x, y) -> gcd(minus(x, y), y) if_gcd(false, x, y) -> gcd(minus(y, x), x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_gcd(x_1, x_2)) -> gcd(encArg(x_1), encArg(x_2)) encArg(cons_if_gcd(x_1, x_2, x_3)) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_gcd(x_1, x_2) -> gcd(encArg(x_1), encArg(x_2)) encode_if_gcd(x_1, x_2, x_3) -> if_gcd(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST