/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- KILLED proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 146 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 1 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 478 ms] (12) BOUNDS(1, INF) (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (16) CpxTRS (17) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (18) CpxRelTRS (19) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxWeightedTrs (21) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxTypedWeightedTrs (23) CompletionProof [UPPER BOUND(ID), 0 ms] (24) CpxTypedWeightedCompleteTrs (25) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) CompletionProof [UPPER BOUND(ID), 0 ms] (28) CpxTypedWeightedCompleteTrs (29) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CpxTypedWeightedCompleteTrs (31) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 4 ms] (32) CpxRNTS (33) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (34) CpxRNTS (35) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (36) CdtProblem (37) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CdtProblem (39) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (40) CdtProblem (41) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (42) CdtProblem (43) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (44) CdtProblem (45) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (46) CdtProblem (47) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (48) CdtProblem (49) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (50) CdtProblem (51) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (52) CdtProblem (53) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (54) CdtProblem ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(f(X, Y), Z) -> f(X, f(Y, Z)) f(X, f(Y, Z)) -> f(Y, Y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(f(X, Y), Z) -> f(X, f(Y, Z)) f(X, f(Y, Z)) -> f(Y, Y) The (relative) TRS S consists of the following rules: encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(f(X, Y), Z) -> f(X, f(Y, Z)) f(X, f(Y, Z)) -> f(Y, Y) The (relative) TRS S consists of the following rules: encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(f(X, Y), Z) -> f(X, f(Y, Z)) f(X, f(Y, Z)) -> f(Y, Y) The (relative) TRS S consists of the following rules: encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: f(f(X, Y), Z) -> f(X, f(Y, Z)) f(X, f(Y, Z)) -> f(Y, Y) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Types: f :: f:encArg:encode_f -> f:encArg:encode_f -> f:encArg:encode_f encArg :: cons_f -> f:encArg:encode_f cons_f :: cons_f -> cons_f -> cons_f encode_f :: cons_f -> cons_f -> f:encArg:encode_f hole_f:encArg:encode_f1_0 :: f:encArg:encode_f hole_cons_f2_0 :: cons_f gen_cons_f3_0 :: Nat -> cons_f ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: f(f(X, Y), Z) -> f(X, f(Y, Z)) f(X, f(Y, Z)) -> f(Y, Y) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Types: f :: f:encArg:encode_f -> f:encArg:encode_f -> f:encArg:encode_f encArg :: cons_f -> f:encArg:encode_f cons_f :: cons_f -> cons_f -> cons_f encode_f :: cons_f -> cons_f -> f:encArg:encode_f hole_f:encArg:encode_f1_0 :: f:encArg:encode_f hole_cons_f2_0 :: cons_f gen_cons_f3_0 :: Nat -> cons_f Generator Equations: gen_cons_f3_0(0) <=> hole_cons_f2_0 gen_cons_f3_0(+(x, 1)) <=> cons_f(hole_cons_f2_0, gen_cons_f3_0(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_cons_f3_0(+(1, n16_0))) -> *4_0, rt in Omega(0) Induction Base: encArg(gen_cons_f3_0(+(1, 0))) Induction Step: encArg(gen_cons_f3_0(+(1, +(n16_0, 1)))) ->_R^Omega(0) f(encArg(hole_cons_f2_0), encArg(gen_cons_f3_0(+(1, n16_0)))) ->_IH f(encArg(hole_cons_f2_0), *4_0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (12) BOUNDS(1, INF) ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(f(X, Y), Z) -> f(X, f(Y, Z)) f(X, f(Y, Z)) -> f(Y, Y) The (relative) TRS S consists of the following rules: encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (15) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(f(X, Y), Z) -> f(X, f(Y, Z)) f(X, f(Y, Z)) -> f(Y, Y) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (17) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (18) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(X, c_f(Y, Z)) -> f(Y, Y) f(c_f(X, Y), Z) -> f(X, f(Y, Z)) The (relative) TRS S consists of the following rules: encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) f(x0, x1) -> c_f(x0, x1) Rewrite Strategy: INNERMOST ---------------------------------------- (19) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (20) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(X, c_f(Y, Z)) -> f(Y, Y) [1] f(c_f(X, Y), Z) -> f(X, f(Y, Z)) [1] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] f(x0, x1) -> c_f(x0, x1) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (21) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (22) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(X, c_f(Y, Z)) -> f(Y, Y) [1] f(c_f(X, Y), Z) -> f(X, f(Y, Z)) [1] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] f(x0, x1) -> c_f(x0, x1) [0] The TRS has the following type information: f :: c_f -> c_f -> c_f c_f :: c_f -> c_f -> c_f encArg :: cons_f -> c_f cons_f :: cons_f -> cons_f -> cons_f encode_f :: cons_f -> cons_f -> c_f Rewrite Strategy: INNERMOST ---------------------------------------- (23) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] f(v0, v1) -> null_f [0] And the following fresh constants: null_encArg, null_encode_f, null_f, const ---------------------------------------- (24) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(X, c_f(Y, Z)) -> f(Y, Y) [1] f(c_f(X, Y), Z) -> f(X, f(Y, Z)) [1] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] f(x0, x1) -> c_f(x0, x1) [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] f(v0, v1) -> null_f [0] The TRS has the following type information: f :: c_f:null_encArg:null_encode_f:null_f -> c_f:null_encArg:null_encode_f:null_f -> c_f:null_encArg:null_encode_f:null_f c_f :: c_f:null_encArg:null_encode_f:null_f -> c_f:null_encArg:null_encode_f:null_f -> c_f:null_encArg:null_encode_f:null_f encArg :: cons_f -> c_f:null_encArg:null_encode_f:null_f cons_f :: cons_f -> cons_f -> cons_f encode_f :: cons_f -> cons_f -> c_f:null_encArg:null_encode_f:null_f null_encArg :: c_f:null_encArg:null_encode_f:null_f null_encode_f :: c_f:null_encArg:null_encode_f:null_f null_f :: c_f:null_encArg:null_encode_f:null_f const :: cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (25) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: null_encArg => 0 null_encode_f => 0 null_f => 0 const => 0 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 f(z, z') -{ 1 }-> f(X, f(Y, Z)) :|: Z >= 0, Y >= 0, z = 1 + X + Y, X >= 0, z' = Z f(z, z') -{ 1 }-> f(Y, Y) :|: Z >= 0, Y >= 0, X >= 0, z = X, z' = 1 + Y + Z f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 f(z, z') -{ 0 }-> 1 + x0 + x1 :|: z = x0, x0 >= 0, x1 >= 0, z' = x1 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (27) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: encArg_1 encode_f_2 f_2 Due to the following rules being added: encArg(v0) -> const [0] encode_f(v0, v1) -> const [0] f(v0, v1) -> const [0] And the following fresh constants: const, const1 ---------------------------------------- (28) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(X, c_f(Y, Z)) -> f(Y, Y) [1] f(c_f(X, Y), Z) -> f(X, f(Y, Z)) [1] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] f(x0, x1) -> c_f(x0, x1) [0] encArg(v0) -> const [0] encode_f(v0, v1) -> const [0] f(v0, v1) -> const [0] The TRS has the following type information: f :: c_f:const -> c_f:const -> c_f:const c_f :: c_f:const -> c_f:const -> c_f:const encArg :: cons_f -> c_f:const cons_f :: cons_f -> cons_f -> cons_f encode_f :: cons_f -> cons_f -> c_f:const const :: c_f:const const1 :: cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (29) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (30) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(X, c_f(Y, Z)) -> f(Y, Y) [1] f(c_f(X, Y), c_f(Y', Z')) -> f(X, f(Y', Y')) [2] f(c_f(X, c_f(X', Y'')), Z) -> f(X, f(X', f(Y'', Z))) [2] f(c_f(X, Y), Z) -> f(X, c_f(Y, Z)) [1] f(c_f(X, Y), Z) -> f(X, const) [1] encArg(cons_f(cons_f(x_1', x_2'), cons_f(x_1'', x_2''))) -> f(f(encArg(x_1'), encArg(x_2')), f(encArg(x_1''), encArg(x_2''))) [0] encArg(cons_f(cons_f(x_1', x_2'), x_2)) -> f(f(encArg(x_1'), encArg(x_2')), const) [0] encArg(cons_f(x_1, cons_f(x_11, x_21))) -> f(const, f(encArg(x_11), encArg(x_21))) [0] encArg(cons_f(x_1, x_2)) -> f(const, const) [0] encode_f(cons_f(x_12, x_22), cons_f(x_13, x_23)) -> f(f(encArg(x_12), encArg(x_22)), f(encArg(x_13), encArg(x_23))) [0] encode_f(cons_f(x_12, x_22), x_2) -> f(f(encArg(x_12), encArg(x_22)), const) [0] encode_f(x_1, cons_f(x_14, x_24)) -> f(const, f(encArg(x_14), encArg(x_24))) [0] encode_f(x_1, x_2) -> f(const, const) [0] f(x0, x1) -> c_f(x0, x1) [0] encArg(v0) -> const [0] encode_f(v0, v1) -> const [0] f(v0, v1) -> const [0] The TRS has the following type information: f :: c_f:const -> c_f:const -> c_f:const c_f :: c_f:const -> c_f:const -> c_f:const encArg :: cons_f -> c_f:const cons_f :: cons_f -> cons_f -> cons_f encode_f :: cons_f -> cons_f -> c_f:const const :: c_f:const const1 :: cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (31) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const => 0 const1 => 0 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_1'), encArg(x_2')), f(encArg(x_1''), encArg(x_2''))) :|: x_1'' >= 0, x_2' >= 0, x_1' >= 0, x_2'' >= 0, z = 1 + (1 + x_1' + x_2') + (1 + x_1'' + x_2'') encArg(z) -{ 0 }-> f(f(encArg(x_1'), encArg(x_2')), 0) :|: z = 1 + (1 + x_1' + x_2') + x_2, x_2' >= 0, x_1' >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_11), encArg(x_21))) :|: x_11 >= 0, x_1 >= 0, z = 1 + x_1 + (1 + x_11 + x_21), x_21 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_12), encArg(x_22)), f(encArg(x_13), encArg(x_23))) :|: z = 1 + x_12 + x_22, x_13 >= 0, x_23 >= 0, x_12 >= 0, z' = 1 + x_13 + x_23, x_22 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_12), encArg(x_22)), 0) :|: z = 1 + x_12 + x_22, x_2 >= 0, z' = x_2, x_12 >= 0, x_22 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_14), encArg(x_24))) :|: x_1 >= 0, x_14 >= 0, x_24 >= 0, z = x_1, z' = 1 + x_14 + x_24 encode_f(z, z') -{ 0 }-> f(0, 0) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 f(z, z') -{ 2 }-> f(X, f(X', f(Y'', Z))) :|: Z >= 0, Y'' >= 0, X >= 0, z' = Z, X' >= 0, z = 1 + X + (1 + X' + Y'') f(z, z') -{ 2 }-> f(X, f(Y', Y')) :|: Y >= 0, Y' >= 0, Z' >= 0, z = 1 + X + Y, X >= 0, z' = 1 + Y' + Z' f(z, z') -{ 1 }-> f(X, 0) :|: Z >= 0, Y >= 0, z = 1 + X + Y, X >= 0, z' = Z f(z, z') -{ 1 }-> f(X, 1 + Y + Z) :|: Z >= 0, Y >= 0, z = 1 + X + Y, X >= 0, z' = Z f(z, z') -{ 1 }-> f(Y, Y) :|: Z >= 0, Y >= 0, X >= 0, z = X, z' = 1 + Y + Z f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 f(z, z') -{ 0 }-> 1 + x0 + x1 :|: z = x0, x0 >= 0, x1 >= 0, z' = x1 ---------------------------------------- (33) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_1'), encArg(x_2')), f(encArg(x_1''), encArg(x_2''))) :|: x_1'' >= 0, x_2' >= 0, x_1' >= 0, x_2'' >= 0, z = 1 + (1 + x_1' + x_2') + (1 + x_1'' + x_2'') encArg(z) -{ 0 }-> f(f(encArg(x_1'), encArg(x_2')), 0) :|: z = 1 + (1 + x_1' + x_2') + x_2, x_2' >= 0, x_1' >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_11), encArg(x_21))) :|: x_11 >= 0, x_1 >= 0, z = 1 + x_1 + (1 + x_11 + x_21), x_21 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_12), encArg(x_22)), f(encArg(x_13), encArg(x_23))) :|: z = 1 + x_12 + x_22, x_13 >= 0, x_23 >= 0, x_12 >= 0, z' = 1 + x_13 + x_23, x_22 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_12), encArg(x_22)), 0) :|: z = 1 + x_12 + x_22, z' >= 0, x_12 >= 0, x_22 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_14), encArg(x_24))) :|: z >= 0, x_14 >= 0, x_24 >= 0, z' = 1 + x_14 + x_24 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> f(X, f(X', f(Y'', z'))) :|: z' >= 0, Y'' >= 0, X >= 0, X' >= 0, z = 1 + X + (1 + X' + Y'') f(z, z') -{ 2 }-> f(X, f(Y', Y')) :|: Y >= 0, Y' >= 0, Z' >= 0, z = 1 + X + Y, X >= 0, z' = 1 + Y' + Z' f(z, z') -{ 1 }-> f(X, 0) :|: z' >= 0, Y >= 0, z = 1 + X + Y, X >= 0 f(z, z') -{ 1 }-> f(X, 1 + Y + z') :|: z' >= 0, Y >= 0, z = 1 + X + Y, X >= 0 f(z, z') -{ 1 }-> f(Y, Y) :|: Z >= 0, Y >= 0, z >= 0, z' = 1 + Y + Z f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 0 }-> 1 + z + z' :|: z >= 0, z' >= 0 ---------------------------------------- (35) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (36) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) f(f(z0, z1), z2) -> f(z0, f(z1, z2)) f(z0, f(z1, z2)) -> f(z1, z1) Tuples: ENCARG(cons_f(z0, z1)) -> c(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) F(z0, f(z1, z2)) -> c3(F(z1, z1)) S tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) F(z0, f(z1, z2)) -> c3(F(z1, z1)) K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2 Defined Pair Symbols: ENCARG_1, ENCODE_F_2, F_2 Compound Symbols: c_3, c1_3, c2_2, c3_1 ---------------------------------------- (37) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (38) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) f(f(z0, z1), z2) -> f(z0, f(z1, z2)) f(z0, f(z1, z2)) -> f(z1, z1) Tuples: ENCARG(cons_f(z0, z1)) -> c(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) F(z0, f(z1, z2)) -> c3(F(z1, z1)) ENCODE_F(z0, z1) -> c4(F(encArg(z0), encArg(z1))) ENCODE_F(z0, z1) -> c4(ENCARG(z0)) ENCODE_F(z0, z1) -> c4(ENCARG(z1)) S tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) F(z0, f(z1, z2)) -> c3(F(z1, z1)) K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2 Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c_3, c2_2, c3_1, c4_1 ---------------------------------------- (39) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_F(z0, z1) -> c4(ENCARG(z0)) ENCODE_F(z0, z1) -> c4(ENCARG(z1)) ---------------------------------------- (40) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) f(f(z0, z1), z2) -> f(z0, f(z1, z2)) f(z0, f(z1, z2)) -> f(z1, z1) Tuples: ENCARG(cons_f(z0, z1)) -> c(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) F(z0, f(z1, z2)) -> c3(F(z1, z1)) ENCODE_F(z0, z1) -> c4(F(encArg(z0), encArg(z1))) S tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) F(z0, f(z1, z2)) -> c3(F(z1, z1)) K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2 Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c_3, c2_2, c3_1, c4_1 ---------------------------------------- (41) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) ---------------------------------------- (42) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(f(z0, z1), z2) -> f(z0, f(z1, z2)) f(z0, f(z1, z2)) -> f(z1, z1) Tuples: ENCARG(cons_f(z0, z1)) -> c(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) F(z0, f(z1, z2)) -> c3(F(z1, z1)) ENCODE_F(z0, z1) -> c4(F(encArg(z0), encArg(z1))) S tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) F(z0, f(z1, z2)) -> c3(F(z1, z1)) K tuples:none Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c_3, c2_2, c3_1, c4_1 ---------------------------------------- (43) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_f(z0, z1)) -> c(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) by ENCARG(cons_f(x0, cons_f(z0, z1))) -> c(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ---------------------------------------- (44) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(f(z0, z1), z2) -> f(z0, f(z1, z2)) f(z0, f(z1, z2)) -> f(z1, z1) Tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) F(z0, f(z1, z2)) -> c3(F(z1, z1)) ENCODE_F(z0, z1) -> c4(F(encArg(z0), encArg(z1))) ENCARG(cons_f(x0, cons_f(z0, z1))) -> c(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) S tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) F(z0, f(z1, z2)) -> c3(F(z1, z1)) K tuples:none Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: F_2, ENCODE_F_2, ENCARG_1 Compound Symbols: c2_2, c3_1, c4_1, c_3 ---------------------------------------- (45) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCODE_F(z0, z1) -> c4(F(encArg(z0), encArg(z1))) by ENCODE_F(x0, cons_f(z0, z1)) -> c4(F(encArg(x0), f(encArg(z0), encArg(z1)))) ENCODE_F(cons_f(z0, z1), x1) -> c4(F(f(encArg(z0), encArg(z1)), encArg(x1))) ---------------------------------------- (46) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(f(z0, z1), z2) -> f(z0, f(z1, z2)) f(z0, f(z1, z2)) -> f(z1, z1) Tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) F(z0, f(z1, z2)) -> c3(F(z1, z1)) ENCARG(cons_f(x0, cons_f(z0, z1))) -> c(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCODE_F(x0, cons_f(z0, z1)) -> c4(F(encArg(x0), f(encArg(z0), encArg(z1)))) ENCODE_F(cons_f(z0, z1), x1) -> c4(F(f(encArg(z0), encArg(z1)), encArg(x1))) S tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) F(z0, f(z1, z2)) -> c3(F(z1, z1)) K tuples:none Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: F_2, ENCARG_1, ENCODE_F_2 Compound Symbols: c2_2, c3_1, c_3, c4_1 ---------------------------------------- (47) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace F(z0, f(z1, z2)) -> c3(F(z1, z1)) by F(z0, f(f(y0, y1), z2)) -> c3(F(f(y0, y1), f(y0, y1))) ---------------------------------------- (48) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(f(z0, z1), z2) -> f(z0, f(z1, z2)) f(z0, f(z1, z2)) -> f(z1, z1) Tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) ENCARG(cons_f(x0, cons_f(z0, z1))) -> c(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCODE_F(x0, cons_f(z0, z1)) -> c4(F(encArg(x0), f(encArg(z0), encArg(z1)))) ENCODE_F(cons_f(z0, z1), x1) -> c4(F(f(encArg(z0), encArg(z1)), encArg(x1))) F(z0, f(f(y0, y1), z2)) -> c3(F(f(y0, y1), f(y0, y1))) S tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) F(z0, f(f(y0, y1), z2)) -> c3(F(f(y0, y1), f(y0, y1))) K tuples:none Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: F_2, ENCARG_1, ENCODE_F_2 Compound Symbols: c2_2, c_3, c4_1, c3_1 ---------------------------------------- (49) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: F(z0, f(f(y0, y1), z2)) -> c3(F(f(y0, y1), f(y0, y1))) ---------------------------------------- (50) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(f(z0, z1), z2) -> f(z0, f(z1, z2)) f(z0, f(z1, z2)) -> f(z1, z1) Tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) ENCARG(cons_f(x0, cons_f(z0, z1))) -> c(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCODE_F(x0, cons_f(z0, z1)) -> c4(F(encArg(x0), f(encArg(z0), encArg(z1)))) ENCODE_F(cons_f(z0, z1), x1) -> c4(F(f(encArg(z0), encArg(z1)), encArg(x1))) S tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) K tuples:none Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: F_2, ENCARG_1, ENCODE_F_2 Compound Symbols: c2_2, c_3, c4_1 ---------------------------------------- (51) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_f(x0, cons_f(z0, z1))) -> c(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) by ENCARG(cons_f(x0, cons_f(x1, cons_f(z0, z1)))) -> c(F(encArg(x0), f(encArg(x1), f(encArg(z0), encArg(z1)))), ENCARG(x0), ENCARG(cons_f(x1, cons_f(z0, z1)))) ENCARG(cons_f(x0, cons_f(cons_f(z0, z1), x2))) -> c(F(encArg(x0), f(f(encArg(z0), encArg(z1)), encArg(x2))), ENCARG(x0), ENCARG(cons_f(cons_f(z0, z1), x2))) ENCARG(cons_f(cons_f(z0, z1), cons_f(x1, x2))) -> c(F(f(encArg(z0), encArg(z1)), f(encArg(x1), encArg(x2))), ENCARG(cons_f(z0, z1)), ENCARG(cons_f(x1, x2))) ---------------------------------------- (52) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(f(z0, z1), z2) -> f(z0, f(z1, z2)) f(z0, f(z1, z2)) -> f(z1, z1) Tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCODE_F(x0, cons_f(z0, z1)) -> c4(F(encArg(x0), f(encArg(z0), encArg(z1)))) ENCODE_F(cons_f(z0, z1), x1) -> c4(F(f(encArg(z0), encArg(z1)), encArg(x1))) ENCARG(cons_f(x0, cons_f(x1, cons_f(z0, z1)))) -> c(F(encArg(x0), f(encArg(x1), f(encArg(z0), encArg(z1)))), ENCARG(x0), ENCARG(cons_f(x1, cons_f(z0, z1)))) ENCARG(cons_f(x0, cons_f(cons_f(z0, z1), x2))) -> c(F(encArg(x0), f(f(encArg(z0), encArg(z1)), encArg(x2))), ENCARG(x0), ENCARG(cons_f(cons_f(z0, z1), x2))) ENCARG(cons_f(cons_f(z0, z1), cons_f(x1, x2))) -> c(F(f(encArg(z0), encArg(z1)), f(encArg(x1), encArg(x2))), ENCARG(cons_f(z0, z1)), ENCARG(cons_f(x1, x2))) S tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) K tuples:none Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: F_2, ENCARG_1, ENCODE_F_2 Compound Symbols: c2_2, c_3, c4_1 ---------------------------------------- (53) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCODE_F(x0, cons_f(z0, z1)) -> c4(F(encArg(x0), f(encArg(z0), encArg(z1)))) by ENCODE_F(x0, cons_f(x1, cons_f(z0, z1))) -> c4(F(encArg(x0), f(encArg(x1), f(encArg(z0), encArg(z1))))) ENCODE_F(x0, cons_f(cons_f(z0, z1), x2)) -> c4(F(encArg(x0), f(f(encArg(z0), encArg(z1)), encArg(x2)))) ENCODE_F(cons_f(z0, z1), cons_f(x1, x2)) -> c4(F(f(encArg(z0), encArg(z1)), f(encArg(x1), encArg(x2)))) ---------------------------------------- (54) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(f(z0, z1), z2) -> f(z0, f(z1, z2)) f(z0, f(z1, z2)) -> f(z1, z1) Tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCODE_F(cons_f(z0, z1), x1) -> c4(F(f(encArg(z0), encArg(z1)), encArg(x1))) ENCARG(cons_f(x0, cons_f(x1, cons_f(z0, z1)))) -> c(F(encArg(x0), f(encArg(x1), f(encArg(z0), encArg(z1)))), ENCARG(x0), ENCARG(cons_f(x1, cons_f(z0, z1)))) ENCARG(cons_f(x0, cons_f(cons_f(z0, z1), x2))) -> c(F(encArg(x0), f(f(encArg(z0), encArg(z1)), encArg(x2))), ENCARG(x0), ENCARG(cons_f(cons_f(z0, z1), x2))) ENCARG(cons_f(cons_f(z0, z1), cons_f(x1, x2))) -> c(F(f(encArg(z0), encArg(z1)), f(encArg(x1), encArg(x2))), ENCARG(cons_f(z0, z1)), ENCARG(cons_f(x1, x2))) ENCODE_F(x0, cons_f(x1, cons_f(z0, z1))) -> c4(F(encArg(x0), f(encArg(x1), f(encArg(z0), encArg(z1))))) ENCODE_F(x0, cons_f(cons_f(z0, z1), x2)) -> c4(F(encArg(x0), f(f(encArg(z0), encArg(z1)), encArg(x2)))) ENCODE_F(cons_f(z0, z1), cons_f(x1, x2)) -> c4(F(f(encArg(z0), encArg(z1)), f(encArg(x1), encArg(x2)))) S tuples: F(f(z0, z1), z2) -> c2(F(z0, f(z1, z2)), F(z1, z2)) K tuples:none Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: F_2, ENCARG_1, ENCODE_F_2 Compound Symbols: c2_2, c_3, c4_1