/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 185 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 236 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) InliningProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 3 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 245 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 55 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 47 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 21 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 66 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (38) CpxRNTS (39) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 321 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 147 ms] (44) CpxRNTS (45) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 242 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 216 ms] (50) CpxRNTS (51) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 139 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 63 ms] (56) CpxRNTS (57) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 148 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 85 ms] (62) CpxRNTS (63) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (64) CpxRNTS (65) IntTrsBoundProof [UPPER BOUND(ID), 160 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 76 ms] (68) CpxRNTS (69) FinalProof [FINISHED, 0 ms] (70) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(0, 1, X) -> h(X, X) h(0, X) -> f(0, X, X) g(X, Y) -> X g(X, Y) -> Y S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(0, 1, X) -> h(X, X) h(0, X) -> f(0, X, X) g(X, Y) -> X g(X, Y) -> Y The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(0, 1, X) -> h(X, X) h(0, X) -> f(0, X, X) g(X, Y) -> X g(X, Y) -> Y The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(0, 1, X) -> h(X, X) [1] h(0, X) -> f(0, X, X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] encArg(0) -> 0 [0] encArg(1) -> 1 [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(0, 1, X) -> h(X, X) [1] h(0, X) -> f(0, X, X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] encArg(0) -> 0 [0] encArg(1) -> 1 [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] The TRS has the following type information: f :: 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g 0 :: 0:1:cons_f:cons_h:cons_g 1 :: 0:1:cons_f:cons_h:cons_g h :: 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g g :: 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g encArg :: 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g cons_f :: 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g cons_h :: 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g cons_g :: 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g encode_f :: 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g encode_0 :: 0:1:cons_f:cons_h:cons_g encode_1 :: 0:1:cons_f:cons_h:cons_g encode_h :: 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g encode_g :: 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g -> 0:1:cons_f:cons_h:cons_g Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: f_3 g_2 h_2 encArg_1 encode_f_3 encode_0 encode_1 encode_h_2 encode_g_2 Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_0 -> null_encode_0 [0] encode_1 -> null_encode_1 [0] encode_h(v0, v1) -> null_encode_h [0] encode_g(v0, v1) -> null_encode_g [0] f(v0, v1, v2) -> null_f [0] h(v0, v1) -> null_h [0] And the following fresh constants: null_encArg, null_encode_f, null_encode_0, null_encode_1, null_encode_h, null_encode_g, null_f, null_h ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(0, 1, X) -> h(X, X) [1] h(0, X) -> f(0, X, X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] encArg(0) -> 0 [0] encArg(1) -> 1 [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_0 -> null_encode_0 [0] encode_1 -> null_encode_1 [0] encode_h(v0, v1) -> null_encode_h [0] encode_g(v0, v1) -> null_encode_g [0] f(v0, v1, v2) -> null_f [0] h(v0, v1) -> null_h [0] The TRS has the following type information: f :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h 0 :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h 1 :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h h :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h g :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h encArg :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h cons_f :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h cons_h :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h cons_g :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h encode_f :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h encode_0 :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h encode_1 :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h encode_h :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h encode_g :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_encArg :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_encode_f :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_encode_0 :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_encode_1 :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_encode_h :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_encode_g :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_f :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_h :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(0, 1, X) -> h(X, X) [1] h(0, X) -> f(0, X, X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] encArg(0) -> 0 [0] encArg(1) -> 1 [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_0 -> null_encode_0 [0] encode_1 -> null_encode_1 [0] encode_h(v0, v1) -> null_encode_h [0] encode_g(v0, v1) -> null_encode_g [0] f(v0, v1, v2) -> null_f [0] h(v0, v1) -> null_h [0] The TRS has the following type information: f :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h 0 :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h 1 :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h h :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h g :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h encArg :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h cons_f :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h cons_h :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h cons_g :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h encode_f :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h encode_0 :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h encode_1 :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h encode_h :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h encode_g :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h -> 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_encArg :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_encode_f :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_encode_0 :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_encode_1 :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_encode_h :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_encode_g :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_f :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h null_h :: 0:1:cons_f:cons_h:cons_g:null_encArg:null_encode_f:null_encode_0:null_encode_1:null_encode_h:null_encode_g:null_f:null_h Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 1 => 1 null_encArg => 0 null_encode_f => 0 null_encode_0 => 0 null_encode_1 => 0 null_encode_h => 0 null_encode_g => 0 null_f => 0 null_h => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_g(z, z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_g(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_h(z, z') -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_h(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 f(z, z', z'') -{ 1 }-> h(X, X) :|: z'' = X, X >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 g(z, z') -{ 1 }-> X :|: z' = Y, Y >= 0, X >= 0, z = X g(z, z') -{ 1 }-> Y :|: z' = Y, Y >= 0, X >= 0, z = X h(z, z') -{ 1 }-> f(0, X, X) :|: z' = X, X >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (15) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: g(z, z') -{ 1 }-> Y :|: z' = Y, Y >= 0, X >= 0, z = X g(z, z') -{ 1 }-> X :|: z' = Y, Y >= 0, X >= 0, z = X ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_g(z, z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_g(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_h(z, z') -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_h(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 f(z, z', z'') -{ 1 }-> h(X, X) :|: z'' = X, X >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 g(z, z') -{ 1 }-> X :|: z' = Y, Y >= 0, X >= 0, z = X g(z, z') -{ 1 }-> Y :|: z' = Y, Y >= 0, X >= 0, z = X h(z, z') -{ 1 }-> f(0, X, X) :|: z' = X, X >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (17) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 1 }-> h(z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 1 }-> f(0, z', z') :|: z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 ---------------------------------------- (19) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { g } { encode_0 } { encode_1 } { f, h } { encArg } { encode_h } { encode_f } { encode_g } ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 1 }-> h(z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 1 }-> f(0, z', z') :|: z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {g}, {encode_0}, {encode_1}, {f,h}, {encArg}, {encode_h}, {encode_f}, {encode_g} ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 1 }-> h(z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 1 }-> f(0, z', z') :|: z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {g}, {encode_0}, {encode_1}, {f,h}, {encArg}, {encode_h}, {encode_f}, {encode_g} ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 1 }-> h(z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 1 }-> f(0, z', z') :|: z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {g}, {encode_0}, {encode_1}, {f,h}, {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 1 }-> h(z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 1 }-> f(0, z', z') :|: z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {encode_1}, {f,h}, {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 1 }-> h(z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 1 }-> f(0, z', z') :|: z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {encode_1}, {f,h}, {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 1 }-> h(z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 1 }-> f(0, z', z') :|: z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {encode_1}, {f,h}, {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: ?, size: O(1) [0] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 1 }-> h(z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 1 }-> f(0, z', z') :|: z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_1}, {f,h}, {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 1 }-> h(z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 1 }-> f(0, z', z') :|: z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_1}, {f,h}, {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 1 }-> h(z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 1 }-> f(0, z', z') :|: z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_1}, {f,h}, {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: ?, size: O(1) [1] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 1 }-> h(z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 1 }-> f(0, z', z') :|: z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f,h}, {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (39) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 1 }-> h(z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 1 }-> f(0, z', z') :|: z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f,h}, {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: h after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 1 }-> h(z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 1 }-> f(0, z', z') :|: z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f,h}, {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: ?, size: O(1) [0] h: runtime: ?, size: O(1) [0] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 Computed RUNTIME bound using CoFloCo for: h after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 3 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 1 }-> h(z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 1 }-> f(0, z', z') :|: z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] h: runtime: O(1) [3], size: O(1) [0] ---------------------------------------- (45) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 4 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= 0, z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] h: runtime: O(1) [3], size: O(1) [0] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 4 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= 0, z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] h: runtime: O(1) [3], size: O(1) [0] encArg: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3*z ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 4 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= 0, z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] h: runtime: O(1) [3], size: O(1) [0] encArg: runtime: O(n^1) [3*z], size: O(n^1) [1 + z] ---------------------------------------- (51) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s16 :|: s14 >= 0, s14 <= x_1 + 1, s15 >= 0, s15 <= x_2 + 1, s16 >= 0, s16 <= s15 + s14, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s3 :|: s'' >= 0, s'' <= x_1 + 1, s1 >= 0, s1 <= x_2 + 1, s2 >= 0, s2 <= x_3 + 1, s3 >= 0, s3 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s6 :|: s4 >= 0, s4 <= x_1 + 1, s5 >= 0, s5 <= x_2 + 1, s6 >= 0, s6 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s10 :|: s7 >= 0, s7 <= z + 1, s8 >= 0, s8 <= z' + 1, s9 >= 0, s9 <= z'' + 1, s10 >= 0, s10 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + 3*z + 3*z' }-> s19 :|: s17 >= 0, s17 <= z + 1, s18 >= 0, s18 <= z' + 1, s19 >= 0, s19 <= s18 + s17, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 3 + 3*z + 3*z' }-> s13 :|: s11 >= 0, s11 <= z + 1, s12 >= 0, s12 <= z' + 1, s13 >= 0, s13 <= 0, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 4 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= 0, z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] h: runtime: O(1) [3], size: O(1) [0] encArg: runtime: O(n^1) [3*z], size: O(n^1) [1 + z] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_h after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s16 :|: s14 >= 0, s14 <= x_1 + 1, s15 >= 0, s15 <= x_2 + 1, s16 >= 0, s16 <= s15 + s14, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s3 :|: s'' >= 0, s'' <= x_1 + 1, s1 >= 0, s1 <= x_2 + 1, s2 >= 0, s2 <= x_3 + 1, s3 >= 0, s3 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s6 :|: s4 >= 0, s4 <= x_1 + 1, s5 >= 0, s5 <= x_2 + 1, s6 >= 0, s6 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s10 :|: s7 >= 0, s7 <= z + 1, s8 >= 0, s8 <= z' + 1, s9 >= 0, s9 <= z'' + 1, s10 >= 0, s10 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + 3*z + 3*z' }-> s19 :|: s17 >= 0, s17 <= z + 1, s18 >= 0, s18 <= z' + 1, s19 >= 0, s19 <= s18 + s17, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 3 + 3*z + 3*z' }-> s13 :|: s11 >= 0, s11 <= z + 1, s12 >= 0, s12 <= z' + 1, s13 >= 0, s13 <= 0, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 4 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= 0, z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_h}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] h: runtime: O(1) [3], size: O(1) [0] encArg: runtime: O(n^1) [3*z], size: O(n^1) [1 + z] encode_h: runtime: ?, size: O(1) [0] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_h after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 3*z + 3*z' ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s16 :|: s14 >= 0, s14 <= x_1 + 1, s15 >= 0, s15 <= x_2 + 1, s16 >= 0, s16 <= s15 + s14, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s3 :|: s'' >= 0, s'' <= x_1 + 1, s1 >= 0, s1 <= x_2 + 1, s2 >= 0, s2 <= x_3 + 1, s3 >= 0, s3 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s6 :|: s4 >= 0, s4 <= x_1 + 1, s5 >= 0, s5 <= x_2 + 1, s6 >= 0, s6 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s10 :|: s7 >= 0, s7 <= z + 1, s8 >= 0, s8 <= z' + 1, s9 >= 0, s9 <= z'' + 1, s10 >= 0, s10 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + 3*z + 3*z' }-> s19 :|: s17 >= 0, s17 <= z + 1, s18 >= 0, s18 <= z' + 1, s19 >= 0, s19 <= s18 + s17, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 3 + 3*z + 3*z' }-> s13 :|: s11 >= 0, s11 <= z + 1, s12 >= 0, s12 <= z' + 1, s13 >= 0, s13 <= 0, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 4 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= 0, z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] h: runtime: O(1) [3], size: O(1) [0] encArg: runtime: O(n^1) [3*z], size: O(n^1) [1 + z] encode_h: runtime: O(n^1) [3 + 3*z + 3*z'], size: O(1) [0] ---------------------------------------- (57) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s16 :|: s14 >= 0, s14 <= x_1 + 1, s15 >= 0, s15 <= x_2 + 1, s16 >= 0, s16 <= s15 + s14, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s3 :|: s'' >= 0, s'' <= x_1 + 1, s1 >= 0, s1 <= x_2 + 1, s2 >= 0, s2 <= x_3 + 1, s3 >= 0, s3 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s6 :|: s4 >= 0, s4 <= x_1 + 1, s5 >= 0, s5 <= x_2 + 1, s6 >= 0, s6 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s10 :|: s7 >= 0, s7 <= z + 1, s8 >= 0, s8 <= z' + 1, s9 >= 0, s9 <= z'' + 1, s10 >= 0, s10 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + 3*z + 3*z' }-> s19 :|: s17 >= 0, s17 <= z + 1, s18 >= 0, s18 <= z' + 1, s19 >= 0, s19 <= s18 + s17, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 3 + 3*z + 3*z' }-> s13 :|: s11 >= 0, s11 <= z + 1, s12 >= 0, s12 <= z' + 1, s13 >= 0, s13 <= 0, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 4 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= 0, z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] h: runtime: O(1) [3], size: O(1) [0] encArg: runtime: O(n^1) [3*z], size: O(n^1) [1 + z] encode_h: runtime: O(n^1) [3 + 3*z + 3*z'], size: O(1) [0] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s16 :|: s14 >= 0, s14 <= x_1 + 1, s15 >= 0, s15 <= x_2 + 1, s16 >= 0, s16 <= s15 + s14, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s3 :|: s'' >= 0, s'' <= x_1 + 1, s1 >= 0, s1 <= x_2 + 1, s2 >= 0, s2 <= x_3 + 1, s3 >= 0, s3 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s6 :|: s4 >= 0, s4 <= x_1 + 1, s5 >= 0, s5 <= x_2 + 1, s6 >= 0, s6 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s10 :|: s7 >= 0, s7 <= z + 1, s8 >= 0, s8 <= z' + 1, s9 >= 0, s9 <= z'' + 1, s10 >= 0, s10 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + 3*z + 3*z' }-> s19 :|: s17 >= 0, s17 <= z + 1, s18 >= 0, s18 <= z' + 1, s19 >= 0, s19 <= s18 + s17, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 3 + 3*z + 3*z' }-> s13 :|: s11 >= 0, s11 <= z + 1, s12 >= 0, s12 <= z' + 1, s13 >= 0, s13 <= 0, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 4 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= 0, z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] h: runtime: O(1) [3], size: O(1) [0] encArg: runtime: O(n^1) [3*z], size: O(n^1) [1 + z] encode_h: runtime: O(n^1) [3 + 3*z + 3*z'], size: O(1) [0] encode_f: runtime: ?, size: O(1) [0] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 3*z + 3*z' + 3*z'' ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s16 :|: s14 >= 0, s14 <= x_1 + 1, s15 >= 0, s15 <= x_2 + 1, s16 >= 0, s16 <= s15 + s14, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s3 :|: s'' >= 0, s'' <= x_1 + 1, s1 >= 0, s1 <= x_2 + 1, s2 >= 0, s2 <= x_3 + 1, s3 >= 0, s3 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s6 :|: s4 >= 0, s4 <= x_1 + 1, s5 >= 0, s5 <= x_2 + 1, s6 >= 0, s6 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s10 :|: s7 >= 0, s7 <= z + 1, s8 >= 0, s8 <= z' + 1, s9 >= 0, s9 <= z'' + 1, s10 >= 0, s10 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + 3*z + 3*z' }-> s19 :|: s17 >= 0, s17 <= z + 1, s18 >= 0, s18 <= z' + 1, s19 >= 0, s19 <= s18 + s17, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 3 + 3*z + 3*z' }-> s13 :|: s11 >= 0, s11 <= z + 1, s12 >= 0, s12 <= z' + 1, s13 >= 0, s13 <= 0, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 4 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= 0, z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] h: runtime: O(1) [3], size: O(1) [0] encArg: runtime: O(n^1) [3*z], size: O(n^1) [1 + z] encode_h: runtime: O(n^1) [3 + 3*z + 3*z'], size: O(1) [0] encode_f: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] ---------------------------------------- (63) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s16 :|: s14 >= 0, s14 <= x_1 + 1, s15 >= 0, s15 <= x_2 + 1, s16 >= 0, s16 <= s15 + s14, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s3 :|: s'' >= 0, s'' <= x_1 + 1, s1 >= 0, s1 <= x_2 + 1, s2 >= 0, s2 <= x_3 + 1, s3 >= 0, s3 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s6 :|: s4 >= 0, s4 <= x_1 + 1, s5 >= 0, s5 <= x_2 + 1, s6 >= 0, s6 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s10 :|: s7 >= 0, s7 <= z + 1, s8 >= 0, s8 <= z' + 1, s9 >= 0, s9 <= z'' + 1, s10 >= 0, s10 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + 3*z + 3*z' }-> s19 :|: s17 >= 0, s17 <= z + 1, s18 >= 0, s18 <= z' + 1, s19 >= 0, s19 <= s18 + s17, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 3 + 3*z + 3*z' }-> s13 :|: s11 >= 0, s11 <= z + 1, s12 >= 0, s12 <= z' + 1, s13 >= 0, s13 <= 0, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 4 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= 0, z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] h: runtime: O(1) [3], size: O(1) [0] encArg: runtime: O(n^1) [3*z], size: O(n^1) [1 + z] encode_h: runtime: O(n^1) [3 + 3*z + 3*z'], size: O(1) [0] encode_f: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] ---------------------------------------- (65) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z + z' ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s16 :|: s14 >= 0, s14 <= x_1 + 1, s15 >= 0, s15 <= x_2 + 1, s16 >= 0, s16 <= s15 + s14, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s3 :|: s'' >= 0, s'' <= x_1 + 1, s1 >= 0, s1 <= x_2 + 1, s2 >= 0, s2 <= x_3 + 1, s3 >= 0, s3 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s6 :|: s4 >= 0, s4 <= x_1 + 1, s5 >= 0, s5 <= x_2 + 1, s6 >= 0, s6 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s10 :|: s7 >= 0, s7 <= z + 1, s8 >= 0, s8 <= z' + 1, s9 >= 0, s9 <= z'' + 1, s10 >= 0, s10 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + 3*z + 3*z' }-> s19 :|: s17 >= 0, s17 <= z + 1, s18 >= 0, s18 <= z' + 1, s19 >= 0, s19 <= s18 + s17, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 3 + 3*z + 3*z' }-> s13 :|: s11 >= 0, s11 <= z + 1, s12 >= 0, s12 <= z' + 1, s13 >= 0, s13 <= 0, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 4 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= 0, z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_g} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] h: runtime: O(1) [3], size: O(1) [0] encArg: runtime: O(n^1) [3*z], size: O(n^1) [1 + z] encode_h: runtime: O(n^1) [3 + 3*z + 3*z'], size: O(1) [0] encode_f: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] encode_g: runtime: ?, size: O(n^1) [2 + z + z'] ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 3*z + 3*z' ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s16 :|: s14 >= 0, s14 <= x_1 + 1, s15 >= 0, s15 <= x_2 + 1, s16 >= 0, s16 <= s15 + s14, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s3 :|: s'' >= 0, s'' <= x_1 + 1, s1 >= 0, s1 <= x_2 + 1, s2 >= 0, s2 <= x_3 + 1, s3 >= 0, s3 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s6 :|: s4 >= 0, s4 <= x_1 + 1, s5 >= 0, s5 <= x_2 + 1, s6 >= 0, s6 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s10 :|: s7 >= 0, s7 <= z + 1, s8 >= 0, s8 <= z' + 1, s9 >= 0, s9 <= z'' + 1, s10 >= 0, s10 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + 3*z + 3*z' }-> s19 :|: s17 >= 0, s17 <= z + 1, s18 >= 0, s18 <= z' + 1, s19 >= 0, s19 <= s18 + s17, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_h(z, z') -{ 3 + 3*z + 3*z' }-> s13 :|: s11 >= 0, s11 <= z + 1, s12 >= 0, s12 <= z' + 1, s13 >= 0, s13 <= 0, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z', z'') -{ 4 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 h(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= 0, z' >= 0, z = 0 h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] h: runtime: O(1) [3], size: O(1) [0] encArg: runtime: O(n^1) [3*z], size: O(n^1) [1 + z] encode_h: runtime: O(n^1) [3 + 3*z + 3*z'], size: O(1) [0] encode_f: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] encode_g: runtime: O(n^1) [1 + 3*z + 3*z'], size: O(n^1) [2 + z + z'] ---------------------------------------- (69) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (70) BOUNDS(1, n^1)