/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 164 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 67 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 23 ms] (20) CdtProblem (21) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (22) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(X, g(X)) -> f(1, g(X)) g(1) -> g(0) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_1 -> 1 encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(X, g(X)) -> f(1, g(X)) g(1) -> g(0) The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_1 -> 1 encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(X, g(X)) -> f(1, g(X)) g(1) -> g(0) The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_1 -> 1 encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_g(z0) -> g(encArg(z0)) encode_1 -> 1 encode_0 -> 0 f(z0, g(z0)) -> f(1, g(z0)) g(1) -> g(0) Tuples: ENCARG(1) -> c ENCARG(0) -> c1 ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0, z1) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_G(z0) -> c5(G(encArg(z0)), ENCARG(z0)) ENCODE_1 -> c6 ENCODE_0 -> c7 F(z0, g(z0)) -> c8(F(1, g(z0)), G(z0)) G(1) -> c9(G(0)) S tuples: F(z0, g(z0)) -> c8(F(1, g(z0)), G(z0)) G(1) -> c9(G(0)) K tuples:none Defined Rule Symbols: f_2, g_1, encArg_1, encode_f_2, encode_g_1, encode_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_F_2, ENCODE_G_1, ENCODE_1, ENCODE_0, F_2, G_1 Compound Symbols: c, c1, c2_3, c3_2, c4_3, c5_2, c6, c7, c8_2, c9_1 ---------------------------------------- (7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: ENCARG(1) -> c ENCODE_1 -> c6 ENCODE_0 -> c7 ENCARG(0) -> c1 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_g(z0) -> g(encArg(z0)) encode_1 -> 1 encode_0 -> 0 f(z0, g(z0)) -> f(1, g(z0)) g(1) -> g(0) Tuples: ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0, z1) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_G(z0) -> c5(G(encArg(z0)), ENCARG(z0)) F(z0, g(z0)) -> c8(F(1, g(z0)), G(z0)) G(1) -> c9(G(0)) S tuples: F(z0, g(z0)) -> c8(F(1, g(z0)), G(z0)) G(1) -> c9(G(0)) K tuples:none Defined Rule Symbols: f_2, g_1, encArg_1, encode_f_2, encode_g_1, encode_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_F_2, ENCODE_G_1, F_2, G_1 Compound Symbols: c2_3, c3_2, c4_3, c5_2, c8_2, c9_1 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_g(z0) -> g(encArg(z0)) encode_1 -> 1 encode_0 -> 0 f(z0, g(z0)) -> f(1, g(z0)) g(1) -> g(0) Tuples: ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0, z1) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_G(z0) -> c5(G(encArg(z0)), ENCARG(z0)) F(z0, g(z0)) -> c8(G(z0)) G(1) -> c9 S tuples: F(z0, g(z0)) -> c8(G(z0)) G(1) -> c9 K tuples:none Defined Rule Symbols: f_2, g_1, encArg_1, encode_f_2, encode_g_1, encode_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_F_2, ENCODE_G_1, F_2, G_1 Compound Symbols: c2_3, c3_2, c4_3, c5_2, c8_1, c9 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_g(z0) -> g(encArg(z0)) encode_1 -> 1 encode_0 -> 0 f(z0, g(z0)) -> f(1, g(z0)) g(1) -> g(0) Tuples: ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(z0, g(z0)) -> c8(G(z0)) G(1) -> c9 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCODE_F(z0, z1) -> c(ENCARG(z0)) ENCODE_F(z0, z1) -> c(ENCARG(z1)) ENCODE_G(z0) -> c(G(encArg(z0))) ENCODE_G(z0) -> c(ENCARG(z0)) S tuples: F(z0, g(z0)) -> c8(G(z0)) G(1) -> c9 K tuples:none Defined Rule Symbols: f_2, g_1, encArg_1, encode_f_2, encode_g_1, encode_1, encode_0 Defined Pair Symbols: ENCARG_1, F_2, G_1, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c2_3, c3_2, c8_1, c9, c_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_F(z0, z1) -> c(ENCARG(z0)) ENCODE_F(z0, z1) -> c(ENCARG(z1)) ENCODE_G(z0) -> c(ENCARG(z0)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_g(z0) -> g(encArg(z0)) encode_1 -> 1 encode_0 -> 0 f(z0, g(z0)) -> f(1, g(z0)) g(1) -> g(0) Tuples: ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(z0, g(z0)) -> c8(G(z0)) G(1) -> c9 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples: F(z0, g(z0)) -> c8(G(z0)) G(1) -> c9 K tuples:none Defined Rule Symbols: f_2, g_1, encArg_1, encode_f_2, encode_g_1, encode_1, encode_0 Defined Pair Symbols: ENCARG_1, F_2, G_1, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c2_3, c3_2, c8_1, c9, c_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_g(z0) -> g(encArg(z0)) encode_1 -> 1 encode_0 -> 0 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, g(z0)) -> f(1, g(z0)) g(1) -> g(0) Tuples: ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(z0, g(z0)) -> c8(G(z0)) G(1) -> c9 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples: F(z0, g(z0)) -> c8(G(z0)) G(1) -> c9 K tuples:none Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, F_2, G_1, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c2_3, c3_2, c8_1, c9, c_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(1) -> c9 We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(z0, g(z0)) -> c8(G(z0)) G(1) -> c9 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [1] POL(1) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2)) = [1] POL(ENCODE_G(x_1)) = [1] POL(F(x_1, x_2)) = [1] POL(G(x_1)) = [1] POL(c(x_1)) = x_1 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c8(x_1)) = x_1 POL(c9) = 0 POL(cons_f(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 POL(f(x_1, x_2)) = [1] + x_2 POL(g(x_1)) = x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, g(z0)) -> f(1, g(z0)) g(1) -> g(0) Tuples: ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(z0, g(z0)) -> c8(G(z0)) G(1) -> c9 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples: F(z0, g(z0)) -> c8(G(z0)) K tuples: G(1) -> c9 Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, F_2, G_1, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c2_3, c3_2, c8_1, c9, c_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(z0, g(z0)) -> c8(G(z0)) We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(z0, g(z0)) -> c8(G(z0)) G(1) -> c9 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [1] POL(1) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2)) = [1] + x_1 + x_2 POL(ENCODE_G(x_1)) = x_1 POL(F(x_1, x_2)) = [1] POL(G(x_1)) = 0 POL(c(x_1)) = x_1 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c8(x_1)) = x_1 POL(c9) = 0 POL(cons_f(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_g(x_1)) = x_1 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1, x_2)) = [1] + x_2 POL(g(x_1)) = x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, g(z0)) -> f(1, g(z0)) g(1) -> g(0) Tuples: ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(z0, g(z0)) -> c8(G(z0)) G(1) -> c9 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples:none K tuples: G(1) -> c9 F(z0, g(z0)) -> c8(G(z0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, F_2, G_1, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c2_3, c3_2, c8_1, c9, c_1 ---------------------------------------- (21) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (22) BOUNDS(1, 1)