/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 164 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 7 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 128 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 50 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 43 ms] (22) CdtProblem (23) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 271 ms] (24) CdtProblem (25) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (26) BOUNDS(1, 1) (27) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CpxRelTRS (29) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (30) typed CpxTrs (31) OrderProof [LOWER BOUND(ID), 0 ms] (32) typed CpxTrs (33) RewriteLemmaProof [LOWER BOUND(ID), 440 ms] (34) BEST (35) proven lower bound (36) LowerBoundPropagationProof [FINISHED, 0 ms] (37) BOUNDS(n^1, INF) (38) typed CpxTrs (39) RewriteLemmaProof [LOWER BOUND(ID), 87 ms] (40) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: h(X, Z) -> f(X, s(X), Z) f(X, Y, g(X, Y)) -> h(0, g(X, Y)) g(0, Y) -> 0 g(X, s(Y)) -> g(X, Y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: h(X, Z) -> f(X, s(X), Z) f(X, Y, g(X, Y)) -> h(0, g(X, Y)) g(0, Y) -> 0 g(X, s(Y)) -> g(X, Y) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: h(X, Z) -> f(X, s(X), Z) f(X, Y, g(X, Y)) -> h(0, g(X, Y)) g(0, Y) -> 0 g(X, s(Y)) -> g(X, Y) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_s(z0) -> s(encArg(z0)) encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_0 -> 0 h(z0, z1) -> f(z0, s(z0), z1) f(z0, z1, g(z0, z1)) -> h(0, g(z0, z1)) g(0, z0) -> 0 g(z0, s(z1)) -> g(z0, z1) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(0) -> c1 ENCARG(cons_h(z0, z1)) -> c2(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1, z2)) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0, z1)) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_H(z0, z1) -> c5(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_F(z0, z1, z2) -> c6(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_S(z0) -> c7(ENCARG(z0)) ENCODE_G(z0, z1) -> c8(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_0 -> c9 H(z0, z1) -> c10(F(z0, s(z0), z1)) F(z0, z1, g(z0, z1)) -> c11(H(0, g(z0, z1)), G(z0, z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) S tuples: H(z0, z1) -> c10(F(z0, s(z0), z1)) F(z0, z1, g(z0, z1)) -> c11(H(0, g(z0, z1)), G(z0, z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) K tuples:none Defined Rule Symbols: h_2, f_3, g_2, encArg_1, encode_h_2, encode_f_3, encode_s_1, encode_g_2, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_H_2, ENCODE_F_3, ENCODE_S_1, ENCODE_G_2, ENCODE_0, H_2, F_3, G_2 Compound Symbols: c_1, c1, c2_3, c3_4, c4_3, c5_3, c6_4, c7_1, c8_3, c9, c10_1, c11_2, c12, c13_1 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: ENCODE_S(z0) -> c7(ENCARG(z0)) Removed 2 trailing nodes: ENCODE_0 -> c9 ENCARG(0) -> c1 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_s(z0) -> s(encArg(z0)) encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_0 -> 0 h(z0, z1) -> f(z0, s(z0), z1) f(z0, z1, g(z0, z1)) -> h(0, g(z0, z1)) g(0, z0) -> 0 g(z0, s(z1)) -> g(z0, z1) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_h(z0, z1)) -> c2(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1, z2)) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0, z1)) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_H(z0, z1) -> c5(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_F(z0, z1, z2) -> c6(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_G(z0, z1) -> c8(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) H(z0, z1) -> c10(F(z0, s(z0), z1)) F(z0, z1, g(z0, z1)) -> c11(H(0, g(z0, z1)), G(z0, z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) S tuples: H(z0, z1) -> c10(F(z0, s(z0), z1)) F(z0, z1, g(z0, z1)) -> c11(H(0, g(z0, z1)), G(z0, z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) K tuples:none Defined Rule Symbols: h_2, f_3, g_2, encArg_1, encode_h_2, encode_f_3, encode_s_1, encode_g_2, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_H_2, ENCODE_F_3, ENCODE_G_2, H_2, F_3, G_2 Compound Symbols: c_1, c2_3, c3_4, c4_3, c5_3, c6_4, c8_3, c10_1, c11_2, c12, c13_1 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_s(z0) -> s(encArg(z0)) encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_0 -> 0 h(z0, z1) -> f(z0, s(z0), z1) f(z0, z1, g(z0, z1)) -> h(0, g(z0, z1)) g(0, z0) -> 0 g(z0, s(z1)) -> g(z0, z1) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_h(z0, z1)) -> c2(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1, z2)) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0, z1)) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_H(z0, z1) -> c5(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_F(z0, z1, z2) -> c6(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_G(z0, z1) -> c8(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(z0, z1, g(z0, z1)) -> c11(H(0, g(z0, z1)), G(z0, z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 S tuples: F(z0, z1, g(z0, z1)) -> c11(H(0, g(z0, z1)), G(z0, z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 K tuples:none Defined Rule Symbols: h_2, f_3, g_2, encArg_1, encode_h_2, encode_f_3, encode_s_1, encode_g_2, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_H_2, ENCODE_F_3, ENCODE_G_2, F_3, G_2, H_2 Compound Symbols: c_1, c2_3, c3_4, c4_3, c5_3, c6_4, c8_3, c11_2, c12, c13_1, c10 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_s(z0) -> s(encArg(z0)) encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_0 -> 0 h(z0, z1) -> f(z0, s(z0), z1) f(z0, z1, g(z0, z1)) -> h(0, g(z0, z1)) g(0, z0) -> 0 g(z0, s(z1)) -> g(z0, z1) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_h(z0, z1)) -> c2(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1, z2)) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0, z1)) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 ENCODE_H(z0, z1) -> c1(H(encArg(z0), encArg(z1))) ENCODE_H(z0, z1) -> c1(ENCARG(z0)) ENCODE_H(z0, z1) -> c1(ENCARG(z1)) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_F(z0, z1, z2) -> c1(ENCARG(z0)) ENCODE_F(z0, z1, z2) -> c1(ENCARG(z1)) ENCODE_F(z0, z1, z2) -> c1(ENCARG(z2)) ENCODE_G(z0, z1) -> c1(G(encArg(z0), encArg(z1))) ENCODE_G(z0, z1) -> c1(ENCARG(z0)) ENCODE_G(z0, z1) -> c1(ENCARG(z1)) F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) S tuples: G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) K tuples:none Defined Rule Symbols: h_2, f_3, g_2, encArg_1, encode_h_2, encode_f_3, encode_s_1, encode_g_2, encode_0 Defined Pair Symbols: ENCARG_1, G_2, H_2, ENCODE_H_2, ENCODE_F_3, ENCODE_G_2, F_3 Compound Symbols: c_1, c2_3, c3_4, c4_3, c12, c13_1, c10, c1_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 7 leading nodes: ENCODE_H(z0, z1) -> c1(ENCARG(z0)) ENCODE_H(z0, z1) -> c1(ENCARG(z1)) ENCODE_F(z0, z1, z2) -> c1(ENCARG(z0)) ENCODE_F(z0, z1, z2) -> c1(ENCARG(z1)) ENCODE_F(z0, z1, z2) -> c1(ENCARG(z2)) ENCODE_G(z0, z1) -> c1(ENCARG(z0)) ENCODE_G(z0, z1) -> c1(ENCARG(z1)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_s(z0) -> s(encArg(z0)) encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_0 -> 0 h(z0, z1) -> f(z0, s(z0), z1) f(z0, z1, g(z0, z1)) -> h(0, g(z0, z1)) g(0, z0) -> 0 g(z0, s(z1)) -> g(z0, z1) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_h(z0, z1)) -> c2(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1, z2)) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0, z1)) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 ENCODE_H(z0, z1) -> c1(H(encArg(z0), encArg(z1))) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0, z1) -> c1(G(encArg(z0), encArg(z1))) F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) S tuples: G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) K tuples:none Defined Rule Symbols: h_2, f_3, g_2, encArg_1, encode_h_2, encode_f_3, encode_s_1, encode_g_2, encode_0 Defined Pair Symbols: ENCARG_1, G_2, H_2, ENCODE_H_2, ENCODE_F_3, ENCODE_G_2, F_3 Compound Symbols: c_1, c2_3, c3_4, c4_3, c12, c13_1, c10, c1_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_s(z0) -> s(encArg(z0)) encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_0 -> 0 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) h(z0, z1) -> f(z0, s(z0), z1) f(z0, z1, g(z0, z1)) -> h(0, g(z0, z1)) g(0, z0) -> 0 g(z0, s(z1)) -> g(z0, z1) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_h(z0, z1)) -> c2(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1, z2)) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0, z1)) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 ENCODE_H(z0, z1) -> c1(H(encArg(z0), encArg(z1))) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0, z1) -> c1(G(encArg(z0), encArg(z1))) F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) S tuples: G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) K tuples:none Defined Rule Symbols: encArg_1, h_2, f_3, g_2 Defined Pair Symbols: ENCARG_1, G_2, H_2, ENCODE_H_2, ENCODE_F_3, ENCODE_G_2, F_3 Compound Symbols: c_1, c2_3, c3_4, c4_3, c12, c13_1, c10, c1_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(0, z0) -> c12 F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) We considered the (Usable) Rules:none And the Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_h(z0, z1)) -> c2(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1, z2)) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0, z1)) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 ENCODE_H(z0, z1) -> c1(H(encArg(z0), encArg(z1))) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0, z1) -> c1(G(encArg(z0), encArg(z1))) F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2, x_3)) = [1] POL(ENCODE_G(x_1, x_2)) = [1] POL(ENCODE_H(x_1, x_2)) = 0 POL(F(x_1, x_2, x_3)) = [1] POL(G(x_1, x_2)) = [1] POL(H(x_1, x_2)) = 0 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10) = 0 POL(c12) = 0 POL(c13(x_1)) = x_1 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1, x_2, x_3, x_4)) = x_1 + x_2 + x_3 + x_4 POL(c4(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(cons_f(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(cons_g(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_h(x_1, x_2)) = [1] + x_1 + x_2 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1, x_2, x_3)) = [1] + x_1 POL(g(x_1, x_2)) = [1] + x_2 POL(h(x_1, x_2)) = [1] + x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) h(z0, z1) -> f(z0, s(z0), z1) f(z0, z1, g(z0, z1)) -> h(0, g(z0, z1)) g(0, z0) -> 0 g(z0, s(z1)) -> g(z0, z1) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_h(z0, z1)) -> c2(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1, z2)) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0, z1)) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 ENCODE_H(z0, z1) -> c1(H(encArg(z0), encArg(z1))) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0, z1) -> c1(G(encArg(z0), encArg(z1))) F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) S tuples: G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) K tuples: G(0, z0) -> c12 F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) Defined Rule Symbols: encArg_1, h_2, f_3, g_2 Defined Pair Symbols: ENCARG_1, G_2, H_2, ENCODE_H_2, ENCODE_F_3, ENCODE_G_2, F_3 Compound Symbols: c_1, c2_3, c3_4, c4_3, c12, c13_1, c10, c1_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) We considered the (Usable) Rules:none And the Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_h(z0, z1)) -> c2(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1, z2)) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0, z1)) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 ENCODE_H(z0, z1) -> c1(H(encArg(z0), encArg(z1))) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0, z1) -> c1(G(encArg(z0), encArg(z1))) F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2, x_3)) = [1] + x_1 + x_2 POL(ENCODE_G(x_1, x_2)) = 0 POL(ENCODE_H(x_1, x_2)) = 0 POL(F(x_1, x_2, x_3)) = [1] POL(G(x_1, x_2)) = 0 POL(H(x_1, x_2)) = 0 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10) = 0 POL(c12) = 0 POL(c13(x_1)) = x_1 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1, x_2, x_3, x_4)) = x_1 + x_2 + x_3 + x_4 POL(c4(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(cons_f(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(cons_g(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_h(x_1, x_2)) = [1] + x_1 + x_2 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1, x_2, x_3)) = [1] + x_1 POL(g(x_1, x_2)) = [1] + x_1 + x_2 POL(h(x_1, x_2)) = [1] + x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) h(z0, z1) -> f(z0, s(z0), z1) f(z0, z1, g(z0, z1)) -> h(0, g(z0, z1)) g(0, z0) -> 0 g(z0, s(z1)) -> g(z0, z1) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_h(z0, z1)) -> c2(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1, z2)) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0, z1)) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 ENCODE_H(z0, z1) -> c1(H(encArg(z0), encArg(z1))) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0, z1) -> c1(G(encArg(z0), encArg(z1))) F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) S tuples: G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 K tuples: G(0, z0) -> c12 F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) Defined Rule Symbols: encArg_1, h_2, f_3, g_2 Defined Pair Symbols: ENCARG_1, G_2, H_2, ENCODE_H_2, ENCODE_F_3, ENCODE_G_2, F_3 Compound Symbols: c_1, c2_3, c3_4, c4_3, c12, c13_1, c10, c1_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. H(z0, z1) -> c10 We considered the (Usable) Rules:none And the Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_h(z0, z1)) -> c2(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1, z2)) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0, z1)) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 ENCODE_H(z0, z1) -> c1(H(encArg(z0), encArg(z1))) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0, z1) -> c1(G(encArg(z0), encArg(z1))) F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2, x_3)) = [1] + x_1 + x_2 POL(ENCODE_G(x_1, x_2)) = [1] POL(ENCODE_H(x_1, x_2)) = [1] POL(F(x_1, x_2, x_3)) = [1] POL(G(x_1, x_2)) = [1] POL(H(x_1, x_2)) = [1] POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10) = 0 POL(c12) = 0 POL(c13(x_1)) = x_1 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1, x_2, x_3, x_4)) = x_1 + x_2 + x_3 + x_4 POL(c4(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(cons_f(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(cons_g(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_h(x_1, x_2)) = [1] + x_1 + x_2 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1, x_2, x_3)) = x_3 POL(g(x_1, x_2)) = [1] + x_1 POL(h(x_1, x_2)) = x_2 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) h(z0, z1) -> f(z0, s(z0), z1) f(z0, z1, g(z0, z1)) -> h(0, g(z0, z1)) g(0, z0) -> 0 g(z0, s(z1)) -> g(z0, z1) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_h(z0, z1)) -> c2(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1, z2)) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0, z1)) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 ENCODE_H(z0, z1) -> c1(H(encArg(z0), encArg(z1))) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0, z1) -> c1(G(encArg(z0), encArg(z1))) F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) S tuples: G(z0, s(z1)) -> c13(G(z0, z1)) K tuples: G(0, z0) -> c12 F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) H(z0, z1) -> c10 Defined Rule Symbols: encArg_1, h_2, f_3, g_2 Defined Pair Symbols: ENCARG_1, G_2, H_2, ENCODE_H_2, ENCODE_F_3, ENCODE_G_2, F_3 Compound Symbols: c_1, c2_3, c3_4, c4_3, c12, c13_1, c10, c1_1 ---------------------------------------- (23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(z0, s(z1)) -> c13(G(z0, z1)) We considered the (Usable) Rules: h(z0, z1) -> f(z0, s(z0), z1) encArg(s(z0)) -> s(encArg(z0)) f(z0, z1, g(z0, z1)) -> h(0, g(z0, z1)) g(z0, s(z1)) -> g(z0, z1) encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) g(0, z0) -> 0 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encArg(0) -> 0 And the Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_h(z0, z1)) -> c2(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1, z2)) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0, z1)) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 ENCODE_H(z0, z1) -> c1(H(encArg(z0), encArg(z1))) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0, z1) -> c1(G(encArg(z0), encArg(z1))) F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_F(x_1, x_2, x_3)) = [2] + [2]x_1 + [2]x_2 + x_3 + [2]x_3^2 + [2]x_2*x_3 + [2]x_1*x_3 + x_1^2 + [2]x_1*x_2 + [2]x_2^2 POL(ENCODE_G(x_1, x_2)) = [1] + [2]x_2 + [2]x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(ENCODE_H(x_1, x_2)) = [2] + [2]x_1 + [2]x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(F(x_1, x_2, x_3)) = x_3 POL(G(x_1, x_2)) = x_2 POL(H(x_1, x_2)) = 0 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10) = 0 POL(c12) = 0 POL(c13(x_1)) = x_1 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1, x_2, x_3, x_4)) = x_1 + x_2 + x_3 + x_4 POL(c4(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(cons_f(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(cons_g(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_h(x_1, x_2)) = x_1 + x_2 POL(encArg(x_1)) = x_1 POL(f(x_1, x_2, x_3)) = 0 POL(g(x_1, x_2)) = x_2 POL(h(x_1, x_2)) = 0 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(0) -> 0 encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) h(z0, z1) -> f(z0, s(z0), z1) f(z0, z1, g(z0, z1)) -> h(0, g(z0, z1)) g(0, z0) -> 0 g(z0, s(z1)) -> g(z0, z1) Tuples: ENCARG(s(z0)) -> c(ENCARG(z0)) ENCARG(cons_h(z0, z1)) -> c2(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1, z2)) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_g(z0, z1)) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, z0) -> c12 G(z0, s(z1)) -> c13(G(z0, z1)) H(z0, z1) -> c10 ENCODE_H(z0, z1) -> c1(H(encArg(z0), encArg(z1))) ENCODE_F(z0, z1, z2) -> c1(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_G(z0, z1) -> c1(G(encArg(z0), encArg(z1))) F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) S tuples:none K tuples: G(0, z0) -> c12 F(z0, z1, g(z0, z1)) -> c1(H(0, g(z0, z1))) F(z0, z1, g(z0, z1)) -> c1(G(z0, z1)) H(z0, z1) -> c10 G(z0, s(z1)) -> c13(G(z0, z1)) Defined Rule Symbols: encArg_1, h_2, f_3, g_2 Defined Pair Symbols: ENCARG_1, G_2, H_2, ENCODE_H_2, ENCODE_F_3, ENCODE_G_2, F_3 Compound Symbols: c_1, c2_3, c3_4, c4_3, c12, c13_1, c10, c1_1 ---------------------------------------- (25) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (26) BOUNDS(1, 1) ---------------------------------------- (27) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (28) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(X, Z) -> f(X, s(X), Z) f(X, Y, g(X, Y)) -> h(0', g(X, Y)) g(0', Y) -> 0' g(X, s(Y)) -> g(X, Y) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0' Rewrite Strategy: INNERMOST ---------------------------------------- (29) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (30) Obligation: Innermost TRS: Rules: h(X, Z) -> f(X, s(X), Z) f(X, Y, g(X, Y)) -> h(0', g(X, Y)) g(0', Y) -> 0' g(X, s(Y)) -> g(X, Y) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0' Types: h :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g f :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g s :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g g :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g 0' :: s:0':cons_h:cons_f:cons_g encArg :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g cons_h :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g cons_f :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g cons_g :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_h :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_f :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_s :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_g :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_0 :: s:0':cons_h:cons_f:cons_g hole_s:0':cons_h:cons_f:cons_g1_4 :: s:0':cons_h:cons_f:cons_g gen_s:0':cons_h:cons_f:cons_g2_4 :: Nat -> s:0':cons_h:cons_f:cons_g ---------------------------------------- (31) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: h, f, g, encArg They will be analysed ascendingly in the following order: h = f h < encArg g < f f < encArg g < encArg ---------------------------------------- (32) Obligation: Innermost TRS: Rules: h(X, Z) -> f(X, s(X), Z) f(X, Y, g(X, Y)) -> h(0', g(X, Y)) g(0', Y) -> 0' g(X, s(Y)) -> g(X, Y) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0' Types: h :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g f :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g s :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g g :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g 0' :: s:0':cons_h:cons_f:cons_g encArg :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g cons_h :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g cons_f :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g cons_g :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_h :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_f :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_s :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_g :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_0 :: s:0':cons_h:cons_f:cons_g hole_s:0':cons_h:cons_f:cons_g1_4 :: s:0':cons_h:cons_f:cons_g gen_s:0':cons_h:cons_f:cons_g2_4 :: Nat -> s:0':cons_h:cons_f:cons_g Generator Equations: gen_s:0':cons_h:cons_f:cons_g2_4(0) <=> 0' gen_s:0':cons_h:cons_f:cons_g2_4(+(x, 1)) <=> s(gen_s:0':cons_h:cons_f:cons_g2_4(x)) The following defined symbols remain to be analysed: g, h, f, encArg They will be analysed ascendingly in the following order: h = f h < encArg g < f f < encArg g < encArg ---------------------------------------- (33) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_s:0':cons_h:cons_f:cons_g2_4(a), gen_s:0':cons_h:cons_f:cons_g2_4(+(1, n4_4))) -> *3_4, rt in Omega(n4_4) Induction Base: g(gen_s:0':cons_h:cons_f:cons_g2_4(a), gen_s:0':cons_h:cons_f:cons_g2_4(+(1, 0))) Induction Step: g(gen_s:0':cons_h:cons_f:cons_g2_4(a), gen_s:0':cons_h:cons_f:cons_g2_4(+(1, +(n4_4, 1)))) ->_R^Omega(1) g(gen_s:0':cons_h:cons_f:cons_g2_4(a), gen_s:0':cons_h:cons_f:cons_g2_4(+(1, n4_4))) ->_IH *3_4 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (34) Complex Obligation (BEST) ---------------------------------------- (35) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: h(X, Z) -> f(X, s(X), Z) f(X, Y, g(X, Y)) -> h(0', g(X, Y)) g(0', Y) -> 0' g(X, s(Y)) -> g(X, Y) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0' Types: h :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g f :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g s :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g g :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g 0' :: s:0':cons_h:cons_f:cons_g encArg :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g cons_h :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g cons_f :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g cons_g :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_h :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_f :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_s :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_g :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_0 :: s:0':cons_h:cons_f:cons_g hole_s:0':cons_h:cons_f:cons_g1_4 :: s:0':cons_h:cons_f:cons_g gen_s:0':cons_h:cons_f:cons_g2_4 :: Nat -> s:0':cons_h:cons_f:cons_g Generator Equations: gen_s:0':cons_h:cons_f:cons_g2_4(0) <=> 0' gen_s:0':cons_h:cons_f:cons_g2_4(+(x, 1)) <=> s(gen_s:0':cons_h:cons_f:cons_g2_4(x)) The following defined symbols remain to be analysed: g, h, f, encArg They will be analysed ascendingly in the following order: h = f h < encArg g < f f < encArg g < encArg ---------------------------------------- (36) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (37) BOUNDS(n^1, INF) ---------------------------------------- (38) Obligation: Innermost TRS: Rules: h(X, Z) -> f(X, s(X), Z) f(X, Y, g(X, Y)) -> h(0', g(X, Y)) g(0', Y) -> 0' g(X, s(Y)) -> g(X, Y) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0' Types: h :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g f :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g s :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g g :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g 0' :: s:0':cons_h:cons_f:cons_g encArg :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g cons_h :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g cons_f :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g cons_g :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_h :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_f :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_s :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_g :: s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g -> s:0':cons_h:cons_f:cons_g encode_0 :: s:0':cons_h:cons_f:cons_g hole_s:0':cons_h:cons_f:cons_g1_4 :: s:0':cons_h:cons_f:cons_g gen_s:0':cons_h:cons_f:cons_g2_4 :: Nat -> s:0':cons_h:cons_f:cons_g Lemmas: g(gen_s:0':cons_h:cons_f:cons_g2_4(a), gen_s:0':cons_h:cons_f:cons_g2_4(+(1, n4_4))) -> *3_4, rt in Omega(n4_4) Generator Equations: gen_s:0':cons_h:cons_f:cons_g2_4(0) <=> 0' gen_s:0':cons_h:cons_f:cons_g2_4(+(x, 1)) <=> s(gen_s:0':cons_h:cons_f:cons_g2_4(x)) The following defined symbols remain to be analysed: f, h, encArg They will be analysed ascendingly in the following order: h = f h < encArg f < encArg ---------------------------------------- (39) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_s:0':cons_h:cons_f:cons_g2_4(n688_4)) -> gen_s:0':cons_h:cons_f:cons_g2_4(n688_4), rt in Omega(0) Induction Base: encArg(gen_s:0':cons_h:cons_f:cons_g2_4(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_s:0':cons_h:cons_f:cons_g2_4(+(n688_4, 1))) ->_R^Omega(0) s(encArg(gen_s:0':cons_h:cons_f:cons_g2_4(n688_4))) ->_IH s(gen_s:0':cons_h:cons_f:cons_g2_4(c689_4)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (40) BOUNDS(1, INF)