/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 201 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 50 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 68 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 15 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 944 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 425 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 313 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 166 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 160 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 198 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 14 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 137 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) FinalProof [FINISHED, 0 ms] (56) BOUNDS(1, n^2) (57) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (58) TRS for Loop Detection (59) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (60) BEST (61) proven lower bound (62) LowerBoundPropagationProof [FINISHED, 0 ms] (63) BOUNDS(n^1, INF) (64) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) [0] encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) [0] encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] The TRS has the following type information: div :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot 0 :: 0:s:cons_div:cons_quot quot :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot s :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot encArg :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot cons_div :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot cons_quot :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot encode_div :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot encode_0 :: 0:s:cons_div:cons_quot encode_quot :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot encode_s :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: div_2 quot_3 encArg_1 encode_div_2 encode_0 encode_quot_3 encode_s_1 Due to the following rules being added: encArg(v0) -> 0 [0] encode_div(v0, v1) -> 0 [0] encode_0 -> 0 [0] encode_quot(v0, v1, v2) -> 0 [0] encode_s(v0) -> 0 [0] quot(v0, v1, v2) -> 0 [0] And the following fresh constants: none ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) [0] encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encArg(v0) -> 0 [0] encode_div(v0, v1) -> 0 [0] encode_0 -> 0 [0] encode_quot(v0, v1, v2) -> 0 [0] encode_s(v0) -> 0 [0] quot(v0, v1, v2) -> 0 [0] The TRS has the following type information: div :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot 0 :: 0:s:cons_div:cons_quot quot :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot s :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot encArg :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot cons_div :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot cons_quot :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot encode_div :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot encode_0 :: 0:s:cons_div:cons_quot encode_quot :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot encode_s :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) [0] encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encArg(v0) -> 0 [0] encode_div(v0, v1) -> 0 [0] encode_0 -> 0 [0] encode_quot(v0, v1, v2) -> 0 [0] encode_s(v0) -> 0 [0] quot(v0, v1, v2) -> 0 [0] The TRS has the following type information: div :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot 0 :: 0:s:cons_div:cons_quot quot :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot s :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot encArg :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot cons_div :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot cons_quot :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot encode_div :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot encode_0 :: 0:s:cons_div:cons_quot encode_quot :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot encode_s :: 0:s:cons_div:cons_quot -> 0:s:cons_div:cons_quot Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(x, y, y) :|: z' = x, z'' = y, x >= 0, y >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' = y, y >= 0, z' = 0 encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 encArg(z') -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z' = 1 + x_1 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z' = x_1, x_2 >= 0, z'' = x_2 encode_div(z', z'') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z'' = v1, z' = v0 encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z1 = x_3, z' = x_1, x_3 >= 0, x_2 >= 0, z'' = x_2 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 encode_s(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 encode_s(z') -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z' = x_1 quot(z', z'', z1) -{ 1 }-> quot(x, y, z) :|: z' = 1 + x, z1 = z, z >= 0, x >= 0, y >= 0, z'' = 1 + y quot(z', z'', z1) -{ 1 }-> 0 :|: z1 = z, z >= 0, y >= 0, z'' = 1 + y, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 quot(z', z'', z1) -{ 1 }-> 1 + div(x, 1 + z) :|: z'' = 0, z >= 0, z' = x, x >= 0, z1 = 1 + z ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 0 }-> div(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_0 } { div, quot } { encArg } { encode_div } { encode_quot } { encode_s } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 0 }-> div(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {div,quot}, {encArg}, {encode_div}, {encode_quot}, {encode_s} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 0 }-> div(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {div,quot}, {encArg}, {encode_div}, {encode_quot}, {encode_s} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 0 }-> div(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {div,quot}, {encArg}, {encode_div}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: ?, size: O(1) [0] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 0 }-> div(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {div,quot}, {encArg}, {encode_div}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 0 }-> div(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {div,quot}, {encArg}, {encode_div}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' Computed SIZE bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 0 }-> div(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {div,quot}, {encArg}, {encode_div}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: ?, size: O(n^1) [z'] quot: runtime: ?, size: O(n^1) [1 + z'] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 3*z' Computed RUNTIME bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 5 + 3*z' + z'' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 0 }-> div(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_div}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 0 }-> div(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_div}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 0 }-> div(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_div}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] encArg: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2*z' + 3*z'^2 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 0 }-> quot(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 0 }-> div(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> quot(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_div}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] encArg: runtime: O(n^2) [2*z' + 3*z'^2], size: O(n^1) [z'] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 3 + 3*s2 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1, s3 >= 0, s3 <= x_2, s4 >= 0, s4 <= s2, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 5 + 3*s5 + s6 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 + 2*x_3 + 3*x_3^2 }-> s8 :|: s5 >= 0, s5 <= x_1, s6 >= 0, s6 <= x_2, s7 >= 0, s7 <= x_3, s8 >= 0, s8 <= s5 + 1, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -4*z' + 3*z'^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z' - 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 3 + 3*s9 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 }-> s11 :|: s9 >= 0, s9 <= z', s10 >= 0, s10 <= z'', s11 >= 0, s11 <= s9, z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 5 + 3*s12 + s13 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 + 2*z1 + 3*z1^2 }-> s15 :|: s12 >= 0, s12 <= z', s13 >= 0, s13 <= z'', s14 >= 0, s14 <= z1, s15 >= 0, s15 <= s12 + 1, z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2*z' + 3*z'^2 }-> 1 + s16 :|: s16 >= 0, s16 <= z', z' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_div}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] encArg: runtime: O(n^2) [2*z' + 3*z'^2], size: O(n^1) [z'] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_div after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 3 + 3*s2 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1, s3 >= 0, s3 <= x_2, s4 >= 0, s4 <= s2, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 5 + 3*s5 + s6 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 + 2*x_3 + 3*x_3^2 }-> s8 :|: s5 >= 0, s5 <= x_1, s6 >= 0, s6 <= x_2, s7 >= 0, s7 <= x_3, s8 >= 0, s8 <= s5 + 1, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -4*z' + 3*z'^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z' - 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 3 + 3*s9 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 }-> s11 :|: s9 >= 0, s9 <= z', s10 >= 0, s10 <= z'', s11 >= 0, s11 <= s9, z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 5 + 3*s12 + s13 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 + 2*z1 + 3*z1^2 }-> s15 :|: s12 >= 0, s12 <= z', s13 >= 0, s13 <= z'', s14 >= 0, s14 <= z1, s15 >= 0, s15 <= s12 + 1, z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2*z' + 3*z'^2 }-> 1 + s16 :|: s16 >= 0, s16 <= z', z' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_div}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] encArg: runtime: O(n^2) [2*z' + 3*z'^2], size: O(n^1) [z'] encode_div: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_div after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 3 + 5*z' + 3*z'^2 + 2*z'' + 3*z''^2 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 3 + 3*s2 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1, s3 >= 0, s3 <= x_2, s4 >= 0, s4 <= s2, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 5 + 3*s5 + s6 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 + 2*x_3 + 3*x_3^2 }-> s8 :|: s5 >= 0, s5 <= x_1, s6 >= 0, s6 <= x_2, s7 >= 0, s7 <= x_3, s8 >= 0, s8 <= s5 + 1, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -4*z' + 3*z'^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z' - 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 3 + 3*s9 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 }-> s11 :|: s9 >= 0, s9 <= z', s10 >= 0, s10 <= z'', s11 >= 0, s11 <= s9, z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 5 + 3*s12 + s13 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 + 2*z1 + 3*z1^2 }-> s15 :|: s12 >= 0, s12 <= z', s13 >= 0, s13 <= z'', s14 >= 0, s14 <= z1, s15 >= 0, s15 <= s12 + 1, z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2*z' + 3*z'^2 }-> 1 + s16 :|: s16 >= 0, s16 <= z', z' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] encArg: runtime: O(n^2) [2*z' + 3*z'^2], size: O(n^1) [z'] encode_div: runtime: O(n^2) [3 + 5*z' + 3*z'^2 + 2*z'' + 3*z''^2], size: O(n^1) [z'] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 3 + 3*s2 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1, s3 >= 0, s3 <= x_2, s4 >= 0, s4 <= s2, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 5 + 3*s5 + s6 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 + 2*x_3 + 3*x_3^2 }-> s8 :|: s5 >= 0, s5 <= x_1, s6 >= 0, s6 <= x_2, s7 >= 0, s7 <= x_3, s8 >= 0, s8 <= s5 + 1, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -4*z' + 3*z'^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z' - 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 3 + 3*s9 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 }-> s11 :|: s9 >= 0, s9 <= z', s10 >= 0, s10 <= z'', s11 >= 0, s11 <= s9, z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 5 + 3*s12 + s13 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 + 2*z1 + 3*z1^2 }-> s15 :|: s12 >= 0, s12 <= z', s13 >= 0, s13 <= z'', s14 >= 0, s14 <= z1, s15 >= 0, s15 <= s12 + 1, z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2*z' + 3*z'^2 }-> 1 + s16 :|: s16 >= 0, s16 <= z', z' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] encArg: runtime: O(n^2) [2*z' + 3*z'^2], size: O(n^1) [z'] encode_div: runtime: O(n^2) [3 + 5*z' + 3*z'^2 + 2*z'' + 3*z''^2], size: O(n^1) [z'] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 3 + 3*s2 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1, s3 >= 0, s3 <= x_2, s4 >= 0, s4 <= s2, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 5 + 3*s5 + s6 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 + 2*x_3 + 3*x_3^2 }-> s8 :|: s5 >= 0, s5 <= x_1, s6 >= 0, s6 <= x_2, s7 >= 0, s7 <= x_3, s8 >= 0, s8 <= s5 + 1, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -4*z' + 3*z'^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z' - 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 3 + 3*s9 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 }-> s11 :|: s9 >= 0, s9 <= z', s10 >= 0, s10 <= z'', s11 >= 0, s11 <= s9, z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 5 + 3*s12 + s13 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 + 2*z1 + 3*z1^2 }-> s15 :|: s12 >= 0, s12 <= z', s13 >= 0, s13 <= z'', s14 >= 0, s14 <= z1, s15 >= 0, s15 <= s12 + 1, z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2*z' + 3*z'^2 }-> 1 + s16 :|: s16 >= 0, s16 <= z', z' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] encArg: runtime: O(n^2) [2*z' + 3*z'^2], size: O(n^1) [z'] encode_div: runtime: O(n^2) [3 + 5*z' + 3*z'^2 + 2*z'' + 3*z''^2], size: O(n^1) [z'] encode_quot: runtime: ?, size: O(n^1) [1 + z'] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_quot after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 5 + 5*z' + 3*z'^2 + 3*z'' + 3*z''^2 + 2*z1 + 3*z1^2 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 3 + 3*s2 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1, s3 >= 0, s3 <= x_2, s4 >= 0, s4 <= s2, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 5 + 3*s5 + s6 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 + 2*x_3 + 3*x_3^2 }-> s8 :|: s5 >= 0, s5 <= x_1, s6 >= 0, s6 <= x_2, s7 >= 0, s7 <= x_3, s8 >= 0, s8 <= s5 + 1, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -4*z' + 3*z'^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z' - 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 3 + 3*s9 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 }-> s11 :|: s9 >= 0, s9 <= z', s10 >= 0, s10 <= z'', s11 >= 0, s11 <= s9, z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 5 + 3*s12 + s13 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 + 2*z1 + 3*z1^2 }-> s15 :|: s12 >= 0, s12 <= z', s13 >= 0, s13 <= z'', s14 >= 0, s14 <= z1, s15 >= 0, s15 <= s12 + 1, z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2*z' + 3*z'^2 }-> 1 + s16 :|: s16 >= 0, s16 <= z', z' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] encArg: runtime: O(n^2) [2*z' + 3*z'^2], size: O(n^1) [z'] encode_div: runtime: O(n^2) [3 + 5*z' + 3*z'^2 + 2*z'' + 3*z''^2], size: O(n^1) [z'] encode_quot: runtime: O(n^2) [5 + 5*z' + 3*z'^2 + 3*z'' + 3*z''^2 + 2*z1 + 3*z1^2], size: O(n^1) [1 + z'] ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 3 + 3*s2 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1, s3 >= 0, s3 <= x_2, s4 >= 0, s4 <= s2, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 5 + 3*s5 + s6 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 + 2*x_3 + 3*x_3^2 }-> s8 :|: s5 >= 0, s5 <= x_1, s6 >= 0, s6 <= x_2, s7 >= 0, s7 <= x_3, s8 >= 0, s8 <= s5 + 1, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -4*z' + 3*z'^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z' - 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 3 + 3*s9 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 }-> s11 :|: s9 >= 0, s9 <= z', s10 >= 0, s10 <= z'', s11 >= 0, s11 <= s9, z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 5 + 3*s12 + s13 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 + 2*z1 + 3*z1^2 }-> s15 :|: s12 >= 0, s12 <= z', s13 >= 0, s13 <= z'', s14 >= 0, s14 <= z1, s15 >= 0, s15 <= s12 + 1, z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2*z' + 3*z'^2 }-> 1 + s16 :|: s16 >= 0, s16 <= z', z' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] encArg: runtime: O(n^2) [2*z' + 3*z'^2], size: O(n^1) [z'] encode_div: runtime: O(n^2) [3 + 5*z' + 3*z'^2 + 2*z'' + 3*z''^2], size: O(n^1) [z'] encode_quot: runtime: O(n^2) [5 + 5*z' + 3*z'^2 + 3*z'' + 3*z''^2 + 2*z1 + 3*z1^2], size: O(n^1) [1 + z'] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 3 + 3*s2 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1, s3 >= 0, s3 <= x_2, s4 >= 0, s4 <= s2, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 5 + 3*s5 + s6 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 + 2*x_3 + 3*x_3^2 }-> s8 :|: s5 >= 0, s5 <= x_1, s6 >= 0, s6 <= x_2, s7 >= 0, s7 <= x_3, s8 >= 0, s8 <= s5 + 1, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -4*z' + 3*z'^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z' - 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 3 + 3*s9 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 }-> s11 :|: s9 >= 0, s9 <= z', s10 >= 0, s10 <= z'', s11 >= 0, s11 <= s9, z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 5 + 3*s12 + s13 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 + 2*z1 + 3*z1^2 }-> s15 :|: s12 >= 0, s12 <= z', s13 >= 0, s13 <= z'', s14 >= 0, s14 <= z1, s15 >= 0, s15 <= s12 + 1, z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2*z' + 3*z'^2 }-> 1 + s16 :|: s16 >= 0, s16 <= z', z' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] encArg: runtime: O(n^2) [2*z' + 3*z'^2], size: O(n^1) [z'] encode_div: runtime: O(n^2) [3 + 5*z' + 3*z'^2 + 2*z'' + 3*z''^2], size: O(n^1) [z'] encode_quot: runtime: O(n^2) [5 + 5*z' + 3*z'^2 + 3*z'' + 3*z''^2 + 2*z1 + 3*z1^2], size: O(n^1) [1 + z'] encode_s: runtime: ?, size: O(n^1) [1 + z'] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2*z' + 3*z'^2 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 encArg(z') -{ 3 + 3*s2 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1, s3 >= 0, s3 <= x_2, s4 >= 0, s4 <= s2, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 5 + 3*s5 + s6 + 2*x_1 + 3*x_1^2 + 2*x_2 + 3*x_2^2 + 2*x_3 + 3*x_3^2 }-> s8 :|: s5 >= 0, s5 <= x_1, s6 >= 0, s6 <= x_2, s7 >= 0, s7 <= x_3, s8 >= 0, s8 <= s5 + 1, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -4*z' + 3*z'^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z' - 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z', z'') -{ 3 + 3*s9 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 }-> s11 :|: s9 >= 0, s9 <= z', s10 >= 0, s10 <= z'', s11 >= 0, s11 <= s9, z' >= 0, z'' >= 0 encode_div(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 5 + 3*s12 + s13 + 2*z' + 3*z'^2 + 2*z'' + 3*z''^2 + 2*z1 + 3*z1^2 }-> s15 :|: s12 >= 0, s12 <= z', s13 >= 0, s13 <= z'', s14 >= 0, s14 <= z1, s15 >= 0, s15 <= s12 + 1, z' >= 0, z1 >= 0, z'' >= 0 encode_quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2*z' + 3*z'^2 }-> 1 + s16 :|: s16 >= 0, s16 <= z', z' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] encArg: runtime: O(n^2) [2*z' + 3*z'^2], size: O(n^1) [z'] encode_div: runtime: O(n^2) [3 + 5*z' + 3*z'^2 + 2*z'' + 3*z''^2], size: O(n^1) [z'] encode_quot: runtime: O(n^2) [5 + 5*z' + 3*z'^2 + 3*z'' + 3*z''^2 + 2*z1 + 3*z1^2], size: O(n^1) [1 + z'] encode_s: runtime: O(n^2) [2*z' + 3*z'^2], size: O(n^1) [1 + z'] ---------------------------------------- (55) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (56) BOUNDS(1, n^2) ---------------------------------------- (57) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (58) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (59) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence quot(s(x), s(y), z) ->^+ quot(x, y, z) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (60) Complex Obligation (BEST) ---------------------------------------- (61) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (62) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (63) BOUNDS(n^1, INF) ---------------------------------------- (64) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST