/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^2, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 221 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 311 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 76 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^2, INF) (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 83 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 48 ms] (26) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) Types: plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot 0' :: 0':s:cons_plus:cons_times:cons_div:cons_quot s :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encArg :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_0 :: 0':s:cons_plus:cons_times:cons_div:cons_quot encode_s :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot hole_0':s:cons_plus:cons_times:cons_div:cons_quot1_4 :: 0':s:cons_plus:cons_times:cons_div:cons_quot gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4 :: Nat -> 0':s:cons_plus:cons_times:cons_div:cons_quot ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: plus, times, div, quot, encArg They will be analysed ascendingly in the following order: plus < times plus < encArg times < div times < encArg div = quot div < encArg quot < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) Types: plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot 0' :: 0':s:cons_plus:cons_times:cons_div:cons_quot s :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encArg :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_0 :: 0':s:cons_plus:cons_times:cons_div:cons_quot encode_s :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot hole_0':s:cons_plus:cons_times:cons_div:cons_quot1_4 :: 0':s:cons_plus:cons_times:cons_div:cons_quot gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4 :: Nat -> 0':s:cons_plus:cons_times:cons_div:cons_quot Generator Equations: gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(0) <=> 0' gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(x, 1)) <=> s(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(x)) The following defined symbols remain to be analysed: plus, times, div, quot, encArg They will be analysed ascendingly in the following order: plus < times plus < encArg times < div times < encArg div = quot div < encArg quot < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n4_4), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b)) -> gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(n4_4, b)), rt in Omega(1 + n4_4) Induction Base: plus(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(0), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b)) ->_R^Omega(1) gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b) Induction Step: plus(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(n4_4, 1)), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b)) ->_R^Omega(1) s(plus(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n4_4), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b))) ->_IH s(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(b, c5_4))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) Types: plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot 0' :: 0':s:cons_plus:cons_times:cons_div:cons_quot s :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encArg :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_0 :: 0':s:cons_plus:cons_times:cons_div:cons_quot encode_s :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot hole_0':s:cons_plus:cons_times:cons_div:cons_quot1_4 :: 0':s:cons_plus:cons_times:cons_div:cons_quot gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4 :: Nat -> 0':s:cons_plus:cons_times:cons_div:cons_quot Generator Equations: gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(0) <=> 0' gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(x, 1)) <=> s(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(x)) The following defined symbols remain to be analysed: plus, times, div, quot, encArg They will be analysed ascendingly in the following order: plus < times plus < encArg times < div times < encArg div = quot div < encArg quot < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) Types: plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot 0' :: 0':s:cons_plus:cons_times:cons_div:cons_quot s :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encArg :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_0 :: 0':s:cons_plus:cons_times:cons_div:cons_quot encode_s :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot hole_0':s:cons_plus:cons_times:cons_div:cons_quot1_4 :: 0':s:cons_plus:cons_times:cons_div:cons_quot gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4 :: Nat -> 0':s:cons_plus:cons_times:cons_div:cons_quot Lemmas: plus(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n4_4), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b)) -> gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(n4_4, b)), rt in Omega(1 + n4_4) Generator Equations: gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(0) <=> 0' gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(x, 1)) <=> s(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(x)) The following defined symbols remain to be analysed: times, div, quot, encArg They will be analysed ascendingly in the following order: times < div times < encArg div = quot div < encArg quot < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: times(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n985_4), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b)) -> gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(*(n985_4, b)), rt in Omega(1 + b*n985_4 + n985_4) Induction Base: times(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(0), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b)) ->_R^Omega(1) 0' Induction Step: times(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(n985_4, 1)), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b)) ->_R^Omega(1) plus(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b), times(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n985_4), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b))) ->_IH plus(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(*(c986_4, b))) ->_L^Omega(1 + b) gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(b, *(n985_4, b))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^2 for the following obligation: Innermost TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) Types: plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot 0' :: 0':s:cons_plus:cons_times:cons_div:cons_quot s :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encArg :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_0 :: 0':s:cons_plus:cons_times:cons_div:cons_quot encode_s :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot hole_0':s:cons_plus:cons_times:cons_div:cons_quot1_4 :: 0':s:cons_plus:cons_times:cons_div:cons_quot gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4 :: Nat -> 0':s:cons_plus:cons_times:cons_div:cons_quot Lemmas: plus(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n4_4), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b)) -> gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(n4_4, b)), rt in Omega(1 + n4_4) Generator Equations: gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(0) <=> 0' gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(x, 1)) <=> s(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(x)) The following defined symbols remain to be analysed: times, div, quot, encArg They will be analysed ascendingly in the following order: times < div times < encArg div = quot div < encArg quot < encArg ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^2, INF) ---------------------------------------- (22) Obligation: Innermost TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) Types: plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot 0' :: 0':s:cons_plus:cons_times:cons_div:cons_quot s :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encArg :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_0 :: 0':s:cons_plus:cons_times:cons_div:cons_quot encode_s :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot hole_0':s:cons_plus:cons_times:cons_div:cons_quot1_4 :: 0':s:cons_plus:cons_times:cons_div:cons_quot gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4 :: Nat -> 0':s:cons_plus:cons_times:cons_div:cons_quot Lemmas: plus(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n4_4), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b)) -> gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(n4_4, b)), rt in Omega(1 + n4_4) times(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n985_4), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b)) -> gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(*(n985_4, b)), rt in Omega(1 + b*n985_4 + n985_4) Generator Equations: gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(0) <=> 0' gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(x, 1)) <=> s(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(x)) The following defined symbols remain to be analysed: quot, div, encArg They will be analysed ascendingly in the following order: div = quot div < encArg quot < encArg ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: quot(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n2306_4), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(1, n2306_4)), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(c)) -> gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(0), rt in Omega(1 + n2306_4) Induction Base: quot(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(0), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(1, 0)), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(c)) ->_R^Omega(1) 0' Induction Step: quot(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(n2306_4, 1)), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(1, +(n2306_4, 1))), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(c)) ->_R^Omega(1) quot(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n2306_4), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(1, n2306_4)), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(c)) ->_IH gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: Innermost TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2, x_3)) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2, x_3) -> quot(encArg(x_1), encArg(x_2), encArg(x_3)) Types: plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot 0' :: 0':s:cons_plus:cons_times:cons_div:cons_quot s :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encArg :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot cons_quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_plus :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_0 :: 0':s:cons_plus:cons_times:cons_div:cons_quot encode_s :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_times :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_div :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot encode_quot :: 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot -> 0':s:cons_plus:cons_times:cons_div:cons_quot hole_0':s:cons_plus:cons_times:cons_div:cons_quot1_4 :: 0':s:cons_plus:cons_times:cons_div:cons_quot gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4 :: Nat -> 0':s:cons_plus:cons_times:cons_div:cons_quot Lemmas: plus(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n4_4), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b)) -> gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(n4_4, b)), rt in Omega(1 + n4_4) times(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n985_4), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(b)) -> gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(*(n985_4, b)), rt in Omega(1 + b*n985_4 + n985_4) quot(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n2306_4), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(1, n2306_4)), gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(c)) -> gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(0), rt in Omega(1 + n2306_4) Generator Equations: gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(0) <=> 0' gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(x, 1)) <=> s(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(x)) The following defined symbols remain to be analysed: div, encArg They will be analysed ascendingly in the following order: div = quot div < encArg quot < encArg ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n3415_4)) -> gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n3415_4), rt in Omega(0) Induction Base: encArg(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(+(n3415_4, 1))) ->_R^Omega(0) s(encArg(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(n3415_4))) ->_IH s(gen_0':s:cons_plus:cons_times:cons_div:cons_quot2_4(c3416_4)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (26) BOUNDS(1, INF)