/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 160 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) CompleteCoflocoProof [FINISHED, 325 ms] (14) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, y, z) -> g(x, y, z) g(0, 1, x) -> f(x, x, x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2, x_3)) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2, x_3) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, y, z) -> g(x, y, z) g(0, 1, x) -> f(x, x, x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2, x_3)) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2, x_3) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, y, z) -> g(x, y, z) g(0, 1, x) -> f(x, x, x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2, x_3)) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2, x_3) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, y, z) -> g(x, y, z) [1] g(0, 1, x) -> f(x, x, x) [1] encArg(0) -> 0 [0] encArg(1) -> 1 [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1, x_2, x_3)) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2, x_3) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, y, z) -> g(x, y, z) [1] g(0, 1, x) -> f(x, x, x) [1] encArg(0) -> 0 [0] encArg(1) -> 1 [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1, x_2, x_3)) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2, x_3) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] The TRS has the following type information: f :: 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g g :: 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g 0 :: 0:1:cons_f:cons_g 1 :: 0:1:cons_f:cons_g encArg :: 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g cons_f :: 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g cons_g :: 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g encode_f :: 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g encode_g :: 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g encode_0 :: 0:1:cons_f:cons_g encode_1 :: 0:1:cons_f:cons_g Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: encArg(v0) -> null_encArg [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_g(v0, v1, v2) -> null_encode_g [0] encode_0 -> null_encode_0 [0] encode_1 -> null_encode_1 [0] g(v0, v1, v2) -> null_g [0] And the following fresh constants: null_encArg, null_encode_f, null_encode_g, null_encode_0, null_encode_1, null_g ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, y, z) -> g(x, y, z) [1] g(0, 1, x) -> f(x, x, x) [1] encArg(0) -> 0 [0] encArg(1) -> 1 [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1, x_2, x_3)) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2, x_3) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_g(v0, v1, v2) -> null_encode_g [0] encode_0 -> null_encode_0 [0] encode_1 -> null_encode_1 [0] g(v0, v1, v2) -> null_g [0] The TRS has the following type information: f :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g g :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g 0 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g 1 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g encArg :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g cons_f :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g cons_g :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g encode_f :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g encode_g :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g encode_0 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g encode_1 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_encArg :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_encode_f :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_encode_g :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_encode_0 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_encode_1 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_g :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 1 => 1 null_encArg => 0 null_encode_f => 0 null_encode_g => 0 null_encode_0 => 0 null_encode_1 => 0 null_g => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z1 = x_3, z' = x_1, x_3 >= 0, x_2 >= 0, z'' = x_2 encode_f(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z1 = x_3, z' = x_1, x_3 >= 0, x_2 >= 0, z'' = x_2 encode_g(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 f(z', z'', z1) -{ 1 }-> g(x, y, z) :|: z1 = z, z >= 0, z' = x, z'' = y, x >= 0, y >= 0 g(z', z'', z1) -{ 1 }-> f(x, x, x) :|: x >= 0, z'' = 1, z1 = x, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (13) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V, V1, V5),0,[f(V, V1, V5, Out)],[V >= 0,V1 >= 0,V5 >= 0]). eq(start(V, V1, V5),0,[g(V, V1, V5, Out)],[V >= 0,V1 >= 0,V5 >= 0]). eq(start(V, V1, V5),0,[encArg(V, Out)],[V >= 0]). eq(start(V, V1, V5),0,[fun(V, V1, V5, Out)],[V >= 0,V1 >= 0,V5 >= 0]). eq(start(V, V1, V5),0,[fun1(V, V1, V5, Out)],[V >= 0,V1 >= 0,V5 >= 0]). eq(start(V, V1, V5),0,[fun2(Out)],[]). eq(start(V, V1, V5),0,[fun3(Out)],[]). eq(f(V, V1, V5, Out),1,[g(V4, V2, V3, Ret)],[Out = Ret,V5 = V3,V3 >= 0,V = V4,V1 = V2,V4 >= 0,V2 >= 0]). eq(g(V, V1, V5, Out),1,[f(V6, V6, V6, Ret1)],[Out = Ret1,V6 >= 0,V1 = 1,V5 = V6,V = 0]). eq(encArg(V, Out),0,[],[Out = 0,V = 0]). eq(encArg(V, Out),0,[],[Out = 1,V = 1]). eq(encArg(V, Out),0,[encArg(V9, Ret0),encArg(V8, Ret11),encArg(V7, Ret2),f(Ret0, Ret11, Ret2, Ret3)],[Out = Ret3,V9 >= 0,V = 1 + V7 + V8 + V9,V7 >= 0,V8 >= 0]). eq(encArg(V, Out),0,[encArg(V10, Ret01),encArg(V12, Ret12),encArg(V11, Ret21),g(Ret01, Ret12, Ret21, Ret4)],[Out = Ret4,V10 >= 0,V = 1 + V10 + V11 + V12,V11 >= 0,V12 >= 0]). eq(fun(V, V1, V5, Out),0,[encArg(V14, Ret02),encArg(V13, Ret13),encArg(V15, Ret22),f(Ret02, Ret13, Ret22, Ret5)],[Out = Ret5,V14 >= 0,V5 = V15,V = V14,V15 >= 0,V13 >= 0,V1 = V13]). eq(fun1(V, V1, V5, Out),0,[encArg(V18, Ret03),encArg(V17, Ret14),encArg(V16, Ret23),g(Ret03, Ret14, Ret23, Ret6)],[Out = Ret6,V18 >= 0,V5 = V16,V = V18,V16 >= 0,V17 >= 0,V1 = V17]). eq(fun2(Out),0,[],[Out = 0]). eq(fun3(Out),0,[],[Out = 1]). eq(encArg(V, Out),0,[],[Out = 0,V19 >= 0,V = V19]). eq(fun(V, V1, V5, Out),0,[],[Out = 0,V21 >= 0,V5 = V22,V20 >= 0,V1 = V20,V22 >= 0,V = V21]). eq(fun1(V, V1, V5, Out),0,[],[Out = 0,V25 >= 0,V5 = V23,V24 >= 0,V1 = V24,V23 >= 0,V = V25]). eq(fun3(Out),0,[],[Out = 0]). eq(g(V, V1, V5, Out),0,[],[Out = 0,V26 >= 0,V5 = V27,V28 >= 0,V1 = V28,V27 >= 0,V = V26]). input_output_vars(f(V,V1,V5,Out),[V,V1,V5],[Out]). input_output_vars(g(V,V1,V5,Out),[V,V1,V5],[Out]). input_output_vars(encArg(V,Out),[V],[Out]). input_output_vars(fun(V,V1,V5,Out),[V,V1,V5],[Out]). input_output_vars(fun1(V,V1,V5,Out),[V,V1,V5],[Out]). input_output_vars(fun2(Out),[],[Out]). input_output_vars(fun3(Out),[],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [f/4,g/4] 1. recursive [non_tail,multiple] : [encArg/2] 2. non_recursive : [fun/4] 3. non_recursive : [fun1/4] 4. non_recursive : [fun2/1] 5. non_recursive : [fun3/1] 6. non_recursive : [start/3] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into g/4 1. SCC is partially evaluated into encArg/2 2. SCC is partially evaluated into fun/4 3. SCC is partially evaluated into fun1/4 4. SCC is completely evaluated into other SCCs 5. SCC is partially evaluated into fun3/1 6. SCC is partially evaluated into start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations g/4 * CE 9 is refined into CE [20] * CE 8 is refined into CE [21] ### Cost equations --> "Loop" of g/4 * CEs [21] --> Loop 11 * CEs [20] --> Loop 12 ### Ranking functions of CR g(V,V1,V5,Out) #### Partial ranking functions of CR g(V,V1,V5,Out) ### Specialization of cost equations encArg/2 * CE 11 is refined into CE [22] * CE 12 is refined into CE [23] * CE 10 is refined into CE [24] * CE 13 is refined into CE [25] ### Cost equations --> "Loop" of encArg/2 * CEs [24,25] --> Loop 13 * CEs [22] --> Loop 14 * CEs [23] --> Loop 15 ### Ranking functions of CR encArg(V,Out) * RF of phase [13]: [V] #### Partial ranking functions of CR encArg(V,Out) * Partial RF of phase [13]: - RF of loop [13:1,13:2,13:3]: V ### Specialization of cost equations fun/4 * CE 14 is refined into CE [26,27,28,29,30,31,32,33] * CE 15 is refined into CE [34] ### Cost equations --> "Loop" of fun/4 * CEs [30,31] --> Loop 16 * CEs [28,32] --> Loop 17 * CEs [26,27,29,33,34] --> Loop 18 ### Ranking functions of CR fun(V,V1,V5,Out) #### Partial ranking functions of CR fun(V,V1,V5,Out) ### Specialization of cost equations fun1/4 * CE 16 is refined into CE [35,36,37,38,39,40,41,42] * CE 17 is refined into CE [43] ### Cost equations --> "Loop" of fun1/4 * CEs [39,40] --> Loop 19 * CEs [37,41] --> Loop 20 * CEs [35,36,38,42,43] --> Loop 21 ### Ranking functions of CR fun1(V,V1,V5,Out) #### Partial ranking functions of CR fun1(V,V1,V5,Out) ### Specialization of cost equations fun3/1 * CE 18 is refined into CE [44] * CE 19 is refined into CE [45] ### Cost equations --> "Loop" of fun3/1 * CEs [44] --> Loop 22 * CEs [45] --> Loop 23 ### Ranking functions of CR fun3(Out) #### Partial ranking functions of CR fun3(Out) ### Specialization of cost equations start/3 * CE 1 is refined into CE [46] * CE 2 is refined into CE [47] * CE 3 is refined into CE [48,49] * CE 4 is refined into CE [50,51] * CE 5 is refined into CE [52,53] * CE 6 is refined into CE [54] * CE 7 is refined into CE [55,56] ### Cost equations --> "Loop" of start/3 * CEs [46,47,48,49,50,51,52,53,54,55,56] --> Loop 24 ### Ranking functions of CR start(V,V1,V5) #### Partial ranking functions of CR start(V,V1,V5) Computing Bounds ===================================== #### Cost of chains of g(V,V1,V5,Out): * Chain [12]: 0 with precondition: [Out=0,V>=0,V1>=0,V5>=0] * Chain [11,12]: 2 with precondition: [V=0,V1=1,Out=0,V5>=0] #### Cost of chains of encArg(V,Out): * Chain [15]: 0 with precondition: [V=1,Out=1] * Chain [14]: 0 with precondition: [Out=0,V>=0] * Chain [multiple([13],[[15],[14]])]: 3*it(13)+0 Such that:aux(1) =< V it(13) =< aux(1) with precondition: [Out=0,V>=1] #### Cost of chains of fun(V,V1,V5,Out): * Chain [18]: 9*s(4)+6*s(6)+3*s(10)+3 Such that:s(9) =< V aux(3) =< V1 aux(4) =< V5 s(4) =< aux(4) s(6) =< aux(3) s(10) =< s(9) with precondition: [Out=0,V>=0,V1>=0,V5>=0] * Chain [17]: 6*s(16)+3*s(18)+3 Such that:s(17) =< V aux(5) =< V1 s(16) =< aux(5) s(18) =< s(17) with precondition: [V5=1,Out=0,V>=0,V1>=0] * Chain [16]: 6*s(22)+3*s(26)+3 Such that:s(25) =< V5 aux(6) =< V s(22) =< aux(6) s(26) =< s(25) with precondition: [V1=1,Out=0,V>=0,V5>=0] #### Cost of chains of fun1(V,V1,V5,Out): * Chain [21]: 9*s(38)+6*s(40)+3*s(44)+2 Such that:s(43) =< V aux(9) =< V1 aux(10) =< V5 s(38) =< aux(10) s(40) =< aux(9) s(44) =< s(43) with precondition: [Out=0,V>=0,V1>=0,V5>=0] * Chain [20]: 6*s(50)+3*s(52)+2 Such that:s(51) =< V aux(11) =< V1 s(50) =< aux(11) s(52) =< s(51) with precondition: [V5=1,Out=0,V>=0,V1>=0] * Chain [19]: 6*s(56)+3*s(60)+2 Such that:s(59) =< V5 aux(12) =< V s(56) =< aux(12) s(60) =< s(59) with precondition: [V1=1,Out=0,V>=0,V5>=0] #### Cost of chains of fun3(Out): * Chain [23]: 0 with precondition: [Out=0] * Chain [22]: 0 with precondition: [Out=1] #### Cost of chains of start(V,V1,V5): * Chain [24]: 27*s(72)+24*s(76)+24*s(77)+3 Such that:aux(15) =< V aux(16) =< V1 aux(17) =< V5 s(72) =< aux(15) s(76) =< aux(17) s(77) =< aux(16) with precondition: [] Closed-form bounds of start(V,V1,V5): ------------------------------------- * Chain [24] with precondition: [] - Upper bound: nat(V)*27+3+nat(V1)*24+nat(V5)*24 - Complexity: n ### Maximum cost of start(V,V1,V5): nat(V)*27+3+nat(V1)*24+nat(V5)*24 Asymptotic class: n * Total analysis performed in 251 ms. ---------------------------------------- (14) BOUNDS(1, n^1)