/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 145 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 115 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 73 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 57 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 44 ms] (22) CdtProblem (23) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (24) BOUNDS(1, 1) (25) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CpxRelTRS (27) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (28) typed CpxTrs (29) OrderProof [LOWER BOUND(ID), 0 ms] (30) typed CpxTrs (31) RewriteLemmaProof [LOWER BOUND(ID), 850 ms] (32) BEST (33) proven lower bound (34) LowerBoundPropagationProof [FINISHED, 0 ms] (35) BOUNDS(n^1, INF) (36) typed CpxTrs (37) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (38) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: g(0, f(x, x)) -> x g(x, s(y)) -> g(f(x, y), 0) g(s(x), y) -> g(f(x, y), 0) g(f(x, y), 0) -> f(g(x, 0), g(y, 0)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: g(0, f(x, x)) -> x g(x, s(y)) -> g(f(x, y), 0) g(s(x), y) -> g(f(x, y), 0) g(f(x, y), 0) -> f(g(x, 0), g(y, 0)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: g(0, f(x, x)) -> x g(x, s(y)) -> g(f(x, y), 0) g(s(x), y) -> g(f(x, y), 0) g(f(x, y), 0) -> f(g(x, 0), g(y, 0)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_0 -> 0 encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) g(0, f(z0, z0)) -> z0 g(z0, s(z1)) -> g(f(z0, z1), 0) g(s(z0), z1) -> g(f(z0, z1), 0) g(f(z0, z1), 0) -> f(g(z0, 0), g(z1, 0)) Tuples: ENCARG(0) -> c ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_G(z0, z1) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_0 -> c5 ENCODE_F(z0, z1) -> c6(ENCARG(z0), ENCARG(z1)) ENCODE_S(z0) -> c7(ENCARG(z0)) G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) S tuples: G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) K tuples:none Defined Rule Symbols: g_2, encArg_1, encode_g_2, encode_0, encode_f_2, encode_s_1 Defined Pair Symbols: ENCARG_1, ENCODE_G_2, ENCODE_0, ENCODE_F_2, ENCODE_S_1, G_2 Compound Symbols: c, c1_2, c2_1, c3_3, c4_3, c5, c6_2, c7_1, c8, c9_1, c10_1, c11_2 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_F(z0, z1) -> c6(ENCARG(z0), ENCARG(z1)) ENCODE_S(z0) -> c7(ENCARG(z0)) Removed 2 trailing nodes: ENCARG(0) -> c ENCODE_0 -> c5 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_0 -> 0 encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) g(0, f(z0, z0)) -> z0 g(z0, s(z1)) -> g(f(z0, z1), 0) g(s(z0), z1) -> g(f(z0, z1), 0) g(f(z0, z1), 0) -> f(g(z0, 0), g(z1, 0)) Tuples: ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_G(z0, z1) -> c4(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) S tuples: G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) K tuples:none Defined Rule Symbols: g_2, encArg_1, encode_g_2, encode_0, encode_f_2, encode_s_1 Defined Pair Symbols: ENCARG_1, ENCODE_G_2, G_2 Compound Symbols: c1_2, c2_1, c3_3, c4_3, c8, c9_1, c10_1, c11_2 ---------------------------------------- (9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_0 -> 0 encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) g(0, f(z0, z0)) -> z0 g(z0, s(z1)) -> g(f(z0, z1), 0) g(s(z0), z1) -> g(f(z0, z1), 0) g(f(z0, z1), 0) -> f(g(z0, 0), g(z1, 0)) Tuples: ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) ENCODE_G(z0, z1) -> c(ENCARG(z0)) ENCODE_G(z0, z1) -> c(ENCARG(z1)) S tuples: G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) K tuples:none Defined Rule Symbols: g_2, encArg_1, encode_g_2, encode_0, encode_f_2, encode_s_1 Defined Pair Symbols: ENCARG_1, G_2, ENCODE_G_2 Compound Symbols: c1_2, c2_1, c3_3, c8, c9_1, c10_1, c11_2, c_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_G(z0, z1) -> c(ENCARG(z0)) ENCODE_G(z0, z1) -> c(ENCARG(z1)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_0 -> 0 encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) g(0, f(z0, z0)) -> z0 g(z0, s(z1)) -> g(f(z0, z1), 0) g(s(z0), z1) -> g(f(z0, z1), 0) g(f(z0, z1), 0) -> f(g(z0, 0), g(z1, 0)) Tuples: ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) S tuples: G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) K tuples:none Defined Rule Symbols: g_2, encArg_1, encode_g_2, encode_0, encode_f_2, encode_s_1 Defined Pair Symbols: ENCARG_1, G_2, ENCODE_G_2 Compound Symbols: c1_2, c2_1, c3_3, c8, c9_1, c10_1, c11_2, c_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_g(z0, z1) -> g(encArg(z0), encArg(z1)) encode_0 -> 0 encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) g(0, f(z0, z0)) -> z0 g(z0, s(z1)) -> g(f(z0, z1), 0) g(s(z0), z1) -> g(f(z0, z1), 0) g(f(z0, z1), 0) -> f(g(z0, 0), g(z1, 0)) Tuples: ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) S tuples: G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) K tuples:none Defined Rule Symbols: encArg_1, g_2 Defined Pair Symbols: ENCARG_1, G_2, ENCODE_G_2 Compound Symbols: c1_2, c2_1, c3_3, c8, c9_1, c10_1, c11_2, c_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) We considered the (Usable) Rules: encArg(s(z0)) -> s(encArg(z0)) g(s(z0), z1) -> g(f(z0, z1), 0) g(f(z0, z1), 0) -> f(g(z0, 0), g(z1, 0)) g(z0, s(z1)) -> g(f(z0, z1), 0) encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encArg(0) -> 0 g(0, f(z0, z0)) -> z0 And the Tuples: ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_G(x_1, x_2)) = [2] + x_1 + [2]x_2 + [2]x_2^2 + [2]x_1*x_2 + x_1^2 POL(G(x_1, x_2)) = x_2 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c10(x_1)) = x_1 POL(c11(x_1, x_2)) = x_1 + x_2 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c8) = 0 POL(c9(x_1)) = x_1 POL(cons_g(x_1, x_2)) = [1] + x_1 + x_2 POL(encArg(x_1)) = x_1 POL(f(x_1, x_2)) = x_1 + x_2 POL(g(x_1, x_2)) = x_2 POL(s(x_1)) = [2] + x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) g(0, f(z0, z0)) -> z0 g(z0, s(z1)) -> g(f(z0, z1), 0) g(s(z0), z1) -> g(f(z0, z1), 0) g(f(z0, z1), 0) -> f(g(z0, 0), g(z1, 0)) Tuples: ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) S tuples: G(0, f(z0, z0)) -> c8 G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) K tuples: G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) Defined Rule Symbols: encArg_1, g_2 Defined Pair Symbols: ENCARG_1, G_2, ENCODE_G_2 Compound Symbols: c1_2, c2_1, c3_3, c8, c9_1, c10_1, c11_2, c_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(0, f(z0, z0)) -> c8 We considered the (Usable) Rules: encArg(s(z0)) -> s(encArg(z0)) g(s(z0), z1) -> g(f(z0, z1), 0) g(f(z0, z1), 0) -> f(g(z0, 0), g(z1, 0)) g(z0, s(z1)) -> g(f(z0, z1), 0) encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encArg(0) -> 0 g(0, f(z0, z0)) -> z0 And the Tuples: ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(ENCARG(x_1)) = [2]x_1^2 POL(ENCODE_G(x_1, x_2)) = [2] + x_1 + x_2 + x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(G(x_1, x_2)) = x_2 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c10(x_1)) = x_1 POL(c11(x_1, x_2)) = x_1 + x_2 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c8) = 0 POL(c9(x_1)) = x_1 POL(cons_g(x_1, x_2)) = [2] + x_1 + x_2 POL(encArg(x_1)) = x_1 POL(f(x_1, x_2)) = [2] + x_1 + x_2 POL(g(x_1, x_2)) = x_1 + x_2 POL(s(x_1)) = [2] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) g(0, f(z0, z0)) -> z0 g(z0, s(z1)) -> g(f(z0, z1), 0) g(s(z0), z1) -> g(f(z0, z1), 0) g(f(z0, z1), 0) -> f(g(z0, 0), g(z1, 0)) Tuples: ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) S tuples: G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) K tuples: G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(0, f(z0, z0)) -> c8 Defined Rule Symbols: encArg_1, g_2 Defined Pair Symbols: ENCARG_1, G_2, ENCODE_G_2 Compound Symbols: c1_2, c2_1, c3_3, c8, c9_1, c10_1, c11_2, c_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(s(z0), z1) -> c10(G(f(z0, z1), 0)) We considered the (Usable) Rules: encArg(s(z0)) -> s(encArg(z0)) g(s(z0), z1) -> g(f(z0, z1), 0) g(f(z0, z1), 0) -> f(g(z0, 0), g(z1, 0)) g(z0, s(z1)) -> g(f(z0, z1), 0) encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encArg(0) -> 0 g(0, f(z0, z0)) -> z0 And the Tuples: ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(ENCARG(x_1)) = [2]x_1 + x_1^2 POL(ENCODE_G(x_1, x_2)) = [2] + x_1 + [2]x_2 + x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(G(x_1, x_2)) = x_1 + [2]x_2 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c10(x_1)) = x_1 POL(c11(x_1, x_2)) = x_1 + x_2 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c8) = 0 POL(c9(x_1)) = x_1 POL(cons_g(x_1, x_2)) = [2] + x_1 + x_2 POL(encArg(x_1)) = x_1 POL(f(x_1, x_2)) = x_1 + x_2 POL(g(x_1, x_2)) = x_2 POL(s(x_1)) = [2] + x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) g(0, f(z0, z0)) -> z0 g(z0, s(z1)) -> g(f(z0, z1), 0) g(s(z0), z1) -> g(f(z0, z1), 0) g(f(z0, z1), 0) -> f(g(z0, 0), g(z1, 0)) Tuples: ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) S tuples: G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) K tuples: G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(0, f(z0, z0)) -> c8 G(s(z0), z1) -> c10(G(f(z0, z1), 0)) Defined Rule Symbols: encArg_1, g_2 Defined Pair Symbols: ENCARG_1, G_2, ENCODE_G_2 Compound Symbols: c1_2, c2_1, c3_3, c8, c9_1, c10_1, c11_2, c_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) We considered the (Usable) Rules: encArg(s(z0)) -> s(encArg(z0)) g(s(z0), z1) -> g(f(z0, z1), 0) g(f(z0, z1), 0) -> f(g(z0, 0), g(z1, 0)) g(z0, s(z1)) -> g(f(z0, z1), 0) encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) encArg(0) -> 0 g(0, f(z0, z0)) -> z0 And the Tuples: ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(ENCARG(x_1)) = [2]x_1^2 POL(ENCODE_G(x_1, x_2)) = [2] + [2]x_1 + [2]x_2 + [2]x_2^2 + x_1*x_2 + [2]x_1^2 POL(G(x_1, x_2)) = x_1 + x_2 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c10(x_1)) = x_1 POL(c11(x_1, x_2)) = x_1 + x_2 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c8) = 0 POL(c9(x_1)) = x_1 POL(cons_g(x_1, x_2)) = [2] + x_1 + x_2 POL(encArg(x_1)) = [2]x_1 POL(f(x_1, x_2)) = [1] + x_1 + x_2 POL(g(x_1, x_2)) = x_1 + x_2 POL(s(x_1)) = [2] + x_1 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_g(z0, z1)) -> g(encArg(z0), encArg(z1)) g(0, f(z0, z0)) -> z0 g(z0, s(z1)) -> g(f(z0, z1), 0) g(s(z0), z1) -> g(f(z0, z1), 0) g(f(z0, z1), 0) -> f(g(z0, 0), g(z1, 0)) Tuples: ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(s(z0)) -> c2(ENCARG(z0)) ENCARG(cons_g(z0, z1)) -> c3(G(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) G(0, f(z0, z0)) -> c8 G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) ENCODE_G(z0, z1) -> c(G(encArg(z0), encArg(z1))) S tuples:none K tuples: G(z0, s(z1)) -> c9(G(f(z0, z1), 0)) G(0, f(z0, z0)) -> c8 G(s(z0), z1) -> c10(G(f(z0, z1), 0)) G(f(z0, z1), 0) -> c11(G(z0, 0), G(z1, 0)) Defined Rule Symbols: encArg_1, g_2 Defined Pair Symbols: ENCARG_1, G_2, ENCODE_G_2 Compound Symbols: c1_2, c2_1, c3_3, c8, c9_1, c10_1, c11_2, c_1 ---------------------------------------- (23) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (24) BOUNDS(1, 1) ---------------------------------------- (25) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (26) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(0', f(x, x)) -> x g(x, s(y)) -> g(f(x, y), 0') g(s(x), y) -> g(f(x, y), 0') g(f(x, y), 0') -> f(g(x, 0'), g(y, 0')) The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (27) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (28) Obligation: Innermost TRS: Rules: g(0', f(x, x)) -> x g(x, s(y)) -> g(f(x, y), 0') g(s(x), y) -> g(f(x, y), 0') g(f(x, y), 0') -> f(g(x, 0'), g(y, 0')) encArg(0') -> 0' encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) Types: g :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g 0' :: 0':f:s:cons_g f :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g s :: 0':f:s:cons_g -> 0':f:s:cons_g encArg :: 0':f:s:cons_g -> 0':f:s:cons_g cons_g :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g encode_g :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g encode_0 :: 0':f:s:cons_g encode_f :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g encode_s :: 0':f:s:cons_g -> 0':f:s:cons_g hole_0':f:s:cons_g1_3 :: 0':f:s:cons_g gen_0':f:s:cons_g2_3 :: Nat -> 0':f:s:cons_g ---------------------------------------- (29) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: g, encArg They will be analysed ascendingly in the following order: g < encArg ---------------------------------------- (30) Obligation: Innermost TRS: Rules: g(0', f(x, x)) -> x g(x, s(y)) -> g(f(x, y), 0') g(s(x), y) -> g(f(x, y), 0') g(f(x, y), 0') -> f(g(x, 0'), g(y, 0')) encArg(0') -> 0' encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) Types: g :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g 0' :: 0':f:s:cons_g f :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g s :: 0':f:s:cons_g -> 0':f:s:cons_g encArg :: 0':f:s:cons_g -> 0':f:s:cons_g cons_g :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g encode_g :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g encode_0 :: 0':f:s:cons_g encode_f :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g encode_s :: 0':f:s:cons_g -> 0':f:s:cons_g hole_0':f:s:cons_g1_3 :: 0':f:s:cons_g gen_0':f:s:cons_g2_3 :: Nat -> 0':f:s:cons_g Generator Equations: gen_0':f:s:cons_g2_3(0) <=> 0' gen_0':f:s:cons_g2_3(+(x, 1)) <=> f(0', gen_0':f:s:cons_g2_3(x)) The following defined symbols remain to be analysed: g, encArg They will be analysed ascendingly in the following order: g < encArg ---------------------------------------- (31) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_0':f:s:cons_g2_3(+(1, n4_3)), gen_0':f:s:cons_g2_3(0)) -> *3_3, rt in Omega(n4_3) Induction Base: g(gen_0':f:s:cons_g2_3(+(1, 0)), gen_0':f:s:cons_g2_3(0)) Induction Step: g(gen_0':f:s:cons_g2_3(+(1, +(n4_3, 1))), gen_0':f:s:cons_g2_3(0)) ->_R^Omega(1) f(g(0', 0'), g(gen_0':f:s:cons_g2_3(+(1, n4_3)), 0')) ->_IH f(g(0', 0'), *3_3) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (32) Complex Obligation (BEST) ---------------------------------------- (33) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: g(0', f(x, x)) -> x g(x, s(y)) -> g(f(x, y), 0') g(s(x), y) -> g(f(x, y), 0') g(f(x, y), 0') -> f(g(x, 0'), g(y, 0')) encArg(0') -> 0' encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) Types: g :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g 0' :: 0':f:s:cons_g f :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g s :: 0':f:s:cons_g -> 0':f:s:cons_g encArg :: 0':f:s:cons_g -> 0':f:s:cons_g cons_g :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g encode_g :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g encode_0 :: 0':f:s:cons_g encode_f :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g encode_s :: 0':f:s:cons_g -> 0':f:s:cons_g hole_0':f:s:cons_g1_3 :: 0':f:s:cons_g gen_0':f:s:cons_g2_3 :: Nat -> 0':f:s:cons_g Generator Equations: gen_0':f:s:cons_g2_3(0) <=> 0' gen_0':f:s:cons_g2_3(+(x, 1)) <=> f(0', gen_0':f:s:cons_g2_3(x)) The following defined symbols remain to be analysed: g, encArg They will be analysed ascendingly in the following order: g < encArg ---------------------------------------- (34) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (35) BOUNDS(n^1, INF) ---------------------------------------- (36) Obligation: Innermost TRS: Rules: g(0', f(x, x)) -> x g(x, s(y)) -> g(f(x, y), 0') g(s(x), y) -> g(f(x, y), 0') g(f(x, y), 0') -> f(g(x, 0'), g(y, 0')) encArg(0') -> 0' encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) Types: g :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g 0' :: 0':f:s:cons_g f :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g s :: 0':f:s:cons_g -> 0':f:s:cons_g encArg :: 0':f:s:cons_g -> 0':f:s:cons_g cons_g :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g encode_g :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g encode_0 :: 0':f:s:cons_g encode_f :: 0':f:s:cons_g -> 0':f:s:cons_g -> 0':f:s:cons_g encode_s :: 0':f:s:cons_g -> 0':f:s:cons_g hole_0':f:s:cons_g1_3 :: 0':f:s:cons_g gen_0':f:s:cons_g2_3 :: Nat -> 0':f:s:cons_g Lemmas: g(gen_0':f:s:cons_g2_3(+(1, n4_3)), gen_0':f:s:cons_g2_3(0)) -> *3_3, rt in Omega(n4_3) Generator Equations: gen_0':f:s:cons_g2_3(0) <=> 0' gen_0':f:s:cons_g2_3(+(x, 1)) <=> f(0', gen_0':f:s:cons_g2_3(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (37) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':f:s:cons_g2_3(n38106_3)) -> gen_0':f:s:cons_g2_3(n38106_3), rt in Omega(0) Induction Base: encArg(gen_0':f:s:cons_g2_3(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':f:s:cons_g2_3(+(n38106_3, 1))) ->_R^Omega(0) f(encArg(0'), encArg(gen_0':f:s:cons_g2_3(n38106_3))) ->_R^Omega(0) f(0', encArg(gen_0':f:s:cons_g2_3(n38106_3))) ->_IH f(0', gen_0':f:s:cons_g2_3(c38107_3)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (38) BOUNDS(1, INF)