/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 330 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +(0, y) -> y +(s(x), y) -> s(+(x, y)) ++(nil, ys) -> ys ++(:(x, xs), ys) -> :(x, ++(xs, ys)) sum(:(x, nil)) -> :(x, nil) sum(:(x, :(y, xs))) -> sum(:(+(x, y), xs)) sum(++(xs, :(x, :(y, ys)))) -> sum(++(xs, sum(:(x, :(y, ys))))) -(x, 0) -> x -(0, s(y)) -> 0 -(s(x), s(y)) -> -(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(-(x, y), s(y))) length(nil) -> 0 length(:(x, xs)) -> s(length(xs)) hd(:(x, xs)) -> x avg(xs) -> quot(hd(sum(xs)), length(xs)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(:(x_1, x_2)) -> :(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_avg(x_1)) -> avg(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_:(x_1, x_2) -> :(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) encode_length(x_1) -> length(encArg(x_1)) encode_hd(x_1) -> hd(encArg(x_1)) encode_avg(x_1) -> avg(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +(0, y) -> y +(s(x), y) -> s(+(x, y)) ++(nil, ys) -> ys ++(:(x, xs), ys) -> :(x, ++(xs, ys)) sum(:(x, nil)) -> :(x, nil) sum(:(x, :(y, xs))) -> sum(:(+(x, y), xs)) sum(++(xs, :(x, :(y, ys)))) -> sum(++(xs, sum(:(x, :(y, ys))))) -(x, 0) -> x -(0, s(y)) -> 0 -(s(x), s(y)) -> -(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(-(x, y), s(y))) length(nil) -> 0 length(:(x, xs)) -> s(length(xs)) hd(:(x, xs)) -> x avg(xs) -> quot(hd(sum(xs)), length(xs)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(:(x_1, x_2)) -> :(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_avg(x_1)) -> avg(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_:(x_1, x_2) -> :(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) encode_length(x_1) -> length(encArg(x_1)) encode_hd(x_1) -> hd(encArg(x_1)) encode_avg(x_1) -> avg(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +(0, y) -> y +(s(x), y) -> s(+(x, y)) ++(nil, ys) -> ys ++(:(x, xs), ys) -> :(x, ++(xs, ys)) sum(:(x, nil)) -> :(x, nil) sum(:(x, :(y, xs))) -> sum(:(+(x, y), xs)) sum(++(xs, :(x, :(y, ys)))) -> sum(++(xs, sum(:(x, :(y, ys))))) -(x, 0) -> x -(0, s(y)) -> 0 -(s(x), s(y)) -> -(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(-(x, y), s(y))) length(nil) -> 0 length(:(x, xs)) -> s(length(xs)) hd(:(x, xs)) -> x avg(xs) -> quot(hd(sum(xs)), length(xs)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(:(x_1, x_2)) -> :(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_avg(x_1)) -> avg(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_:(x_1, x_2) -> :(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) encode_length(x_1) -> length(encArg(x_1)) encode_hd(x_1) -> hd(encArg(x_1)) encode_avg(x_1) -> avg(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +(0, y) -> y +(s(x), y) -> s(+(x, y)) ++(nil, ys) -> ys ++(:(x, xs), ys) -> :(x, ++(xs, ys)) sum(:(x, nil)) -> :(x, nil) sum(:(x, :(y, xs))) -> sum(:(+(x, y), xs)) sum(++(xs, :(x, :(y, ys)))) -> sum(++(xs, sum(:(x, :(y, ys))))) -(x, 0) -> x -(0, s(y)) -> 0 -(s(x), s(y)) -> -(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(-(x, y), s(y))) length(nil) -> 0 length(:(x, xs)) -> s(length(xs)) hd(:(x, xs)) -> x avg(xs) -> quot(hd(sum(xs)), length(xs)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(:(x_1, x_2)) -> :(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_avg(x_1)) -> avg(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_:(x_1, x_2) -> :(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) encode_length(x_1) -> length(encArg(x_1)) encode_hd(x_1) -> hd(encArg(x_1)) encode_avg(x_1) -> avg(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence -(s(x), s(y)) ->^+ -(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +(0, y) -> y +(s(x), y) -> s(+(x, y)) ++(nil, ys) -> ys ++(:(x, xs), ys) -> :(x, ++(xs, ys)) sum(:(x, nil)) -> :(x, nil) sum(:(x, :(y, xs))) -> sum(:(+(x, y), xs)) sum(++(xs, :(x, :(y, ys)))) -> sum(++(xs, sum(:(x, :(y, ys))))) -(x, 0) -> x -(0, s(y)) -> 0 -(s(x), s(y)) -> -(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(-(x, y), s(y))) length(nil) -> 0 length(:(x, xs)) -> s(length(xs)) hd(:(x, xs)) -> x avg(xs) -> quot(hd(sum(xs)), length(xs)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(:(x_1, x_2)) -> :(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_avg(x_1)) -> avg(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_:(x_1, x_2) -> :(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) encode_length(x_1) -> length(encArg(x_1)) encode_hd(x_1) -> hd(encArg(x_1)) encode_avg(x_1) -> avg(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +(0, y) -> y +(s(x), y) -> s(+(x, y)) ++(nil, ys) -> ys ++(:(x, xs), ys) -> :(x, ++(xs, ys)) sum(:(x, nil)) -> :(x, nil) sum(:(x, :(y, xs))) -> sum(:(+(x, y), xs)) sum(++(xs, :(x, :(y, ys)))) -> sum(++(xs, sum(:(x, :(y, ys))))) -(x, 0) -> x -(0, s(y)) -> 0 -(s(x), s(y)) -> -(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(-(x, y), s(y))) length(nil) -> 0 length(:(x, xs)) -> s(length(xs)) hd(:(x, xs)) -> x avg(xs) -> quot(hd(sum(xs)), length(xs)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(:(x_1, x_2)) -> :(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_avg(x_1)) -> avg(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_:(x_1, x_2) -> :(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) encode_length(x_1) -> length(encArg(x_1)) encode_hd(x_1) -> hd(encArg(x_1)) encode_avg(x_1) -> avg(encArg(x_1)) Rewrite Strategy: INNERMOST