/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 167 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 277 ms] (12) proven lower bound (13) LowerBoundPropagationProof [FINISHED, 0 ms] (14) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: :(x, x) -> e :(x, e) -> x i(:(x, y)) -> :(y, x) :(:(x, y), z) -> :(x, :(z, i(y))) :(e, x) -> i(x) i(i(x)) -> x i(e) -> e :(x, :(y, i(x))) -> i(y) :(x, :(y, :(i(x), z))) -> :(i(z), y) :(i(x), :(y, x)) -> i(y) :(i(x), :(y, :(x, z))) -> :(i(z), y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(e) -> e encArg(cons_:(x_1, x_2)) -> :(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_:(x_1, x_2) -> :(encArg(x_1), encArg(x_2)) encode_e -> e encode_i(x_1) -> i(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: :(x, x) -> e :(x, e) -> x i(:(x, y)) -> :(y, x) :(:(x, y), z) -> :(x, :(z, i(y))) :(e, x) -> i(x) i(i(x)) -> x i(e) -> e :(x, :(y, i(x))) -> i(y) :(x, :(y, :(i(x), z))) -> :(i(z), y) :(i(x), :(y, x)) -> i(y) :(i(x), :(y, :(x, z))) -> :(i(z), y) The (relative) TRS S consists of the following rules: encArg(e) -> e encArg(cons_:(x_1, x_2)) -> :(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_:(x_1, x_2) -> :(encArg(x_1), encArg(x_2)) encode_e -> e encode_i(x_1) -> i(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: :(x, x) -> e :(x, e) -> x i(:(x, y)) -> :(y, x) :(:(x, y), z) -> :(x, :(z, i(y))) :(e, x) -> i(x) i(i(x)) -> x i(e) -> e :(x, :(y, i(x))) -> i(y) :(x, :(y, :(i(x), z))) -> :(i(z), y) :(i(x), :(y, x)) -> i(y) :(i(x), :(y, :(x, z))) -> :(i(z), y) The (relative) TRS S consists of the following rules: encArg(e) -> e encArg(cons_:(x_1, x_2)) -> :(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_:(x_1, x_2) -> :(encArg(x_1), encArg(x_2)) encode_e -> e encode_i(x_1) -> i(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: :(x, x) -> e :(x, e) -> x i(:(x, y)) -> :(y, x) :(:(x, y), z) -> :(x, :(z, i(y))) :(e, x) -> i(x) i(i(x)) -> x i(e) -> e :(x, :(y, i(x))) -> i(y) :(x, :(y, :(i(x), z))) -> :(i(z), y) :(i(x), :(y, x)) -> i(y) :(i(x), :(y, :(x, z))) -> :(i(z), y) The (relative) TRS S consists of the following rules: encArg(e) -> e encArg(cons_:(x_1, x_2)) -> :(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_:(x_1, x_2) -> :(encArg(x_1), encArg(x_2)) encode_e -> e encode_i(x_1) -> i(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: :(x, x) -> e :(x, e) -> x i(:(x, y)) -> :(y, x) :(:(x, y), z) -> :(x, :(z, i(y))) :(e, x) -> i(x) i(i(x)) -> x i(e) -> e :(x, :(y, i(x))) -> i(y) :(x, :(y, :(i(x), z))) -> :(i(z), y) :(i(x), :(y, x)) -> i(y) :(i(x), :(y, :(x, z))) -> :(i(z), y) encArg(e) -> e encArg(cons_:(x_1, x_2)) -> :(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_:(x_1, x_2) -> :(encArg(x_1), encArg(x_2)) encode_e -> e encode_i(x_1) -> i(encArg(x_1)) Types: : :: e:cons_::cons_i -> e:cons_::cons_i -> e:cons_::cons_i e :: e:cons_::cons_i i :: e:cons_::cons_i -> e:cons_::cons_i encArg :: e:cons_::cons_i -> e:cons_::cons_i cons_: :: e:cons_::cons_i -> e:cons_::cons_i -> e:cons_::cons_i cons_i :: e:cons_::cons_i -> e:cons_::cons_i encode_: :: e:cons_::cons_i -> e:cons_::cons_i -> e:cons_::cons_i encode_e :: e:cons_::cons_i encode_i :: e:cons_::cons_i -> e:cons_::cons_i hole_e:cons_::cons_i1_0 :: e:cons_::cons_i gen_e:cons_::cons_i2_0 :: Nat -> e:cons_::cons_i ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: i, :, encArg They will be analysed ascendingly in the following order: i = : i < encArg : < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: :(x, x) -> e :(x, e) -> x i(:(x, y)) -> :(y, x) :(:(x, y), z) -> :(x, :(z, i(y))) :(e, x) -> i(x) i(i(x)) -> x i(e) -> e :(x, :(y, i(x))) -> i(y) :(x, :(y, :(i(x), z))) -> :(i(z), y) :(i(x), :(y, x)) -> i(y) :(i(x), :(y, :(x, z))) -> :(i(z), y) encArg(e) -> e encArg(cons_:(x_1, x_2)) -> :(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_:(x_1, x_2) -> :(encArg(x_1), encArg(x_2)) encode_e -> e encode_i(x_1) -> i(encArg(x_1)) Types: : :: e:cons_::cons_i -> e:cons_::cons_i -> e:cons_::cons_i e :: e:cons_::cons_i i :: e:cons_::cons_i -> e:cons_::cons_i encArg :: e:cons_::cons_i -> e:cons_::cons_i cons_: :: e:cons_::cons_i -> e:cons_::cons_i -> e:cons_::cons_i cons_i :: e:cons_::cons_i -> e:cons_::cons_i encode_: :: e:cons_::cons_i -> e:cons_::cons_i -> e:cons_::cons_i encode_e :: e:cons_::cons_i encode_i :: e:cons_::cons_i -> e:cons_::cons_i hole_e:cons_::cons_i1_0 :: e:cons_::cons_i gen_e:cons_::cons_i2_0 :: Nat -> e:cons_::cons_i Generator Equations: gen_e:cons_::cons_i2_0(0) <=> e gen_e:cons_::cons_i2_0(+(x, 1)) <=> cons_:(e, gen_e:cons_::cons_i2_0(x)) The following defined symbols remain to be analysed: :, i, encArg They will be analysed ascendingly in the following order: i = : i < encArg : < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_e:cons_::cons_i2_0(n317_0)) -> gen_e:cons_::cons_i2_0(0), rt in Omega(n317_0) Induction Base: encArg(gen_e:cons_::cons_i2_0(0)) ->_R^Omega(0) e Induction Step: encArg(gen_e:cons_::cons_i2_0(+(n317_0, 1))) ->_R^Omega(0) :(encArg(e), encArg(gen_e:cons_::cons_i2_0(n317_0))) ->_R^Omega(0) :(e, encArg(gen_e:cons_::cons_i2_0(n317_0))) ->_IH :(e, gen_e:cons_::cons_i2_0(0)) ->_R^Omega(1) e We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: :(x, x) -> e :(x, e) -> x i(:(x, y)) -> :(y, x) :(:(x, y), z) -> :(x, :(z, i(y))) :(e, x) -> i(x) i(i(x)) -> x i(e) -> e :(x, :(y, i(x))) -> i(y) :(x, :(y, :(i(x), z))) -> :(i(z), y) :(i(x), :(y, x)) -> i(y) :(i(x), :(y, :(x, z))) -> :(i(z), y) encArg(e) -> e encArg(cons_:(x_1, x_2)) -> :(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_:(x_1, x_2) -> :(encArg(x_1), encArg(x_2)) encode_e -> e encode_i(x_1) -> i(encArg(x_1)) Types: : :: e:cons_::cons_i -> e:cons_::cons_i -> e:cons_::cons_i e :: e:cons_::cons_i i :: e:cons_::cons_i -> e:cons_::cons_i encArg :: e:cons_::cons_i -> e:cons_::cons_i cons_: :: e:cons_::cons_i -> e:cons_::cons_i -> e:cons_::cons_i cons_i :: e:cons_::cons_i -> e:cons_::cons_i encode_: :: e:cons_::cons_i -> e:cons_::cons_i -> e:cons_::cons_i encode_e :: e:cons_::cons_i encode_i :: e:cons_::cons_i -> e:cons_::cons_i hole_e:cons_::cons_i1_0 :: e:cons_::cons_i gen_e:cons_::cons_i2_0 :: Nat -> e:cons_::cons_i Generator Equations: gen_e:cons_::cons_i2_0(0) <=> e gen_e:cons_::cons_i2_0(+(x, 1)) <=> cons_:(e, gen_e:cons_::cons_i2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (13) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (14) BOUNDS(n^1, INF)