/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 172 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 121 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: g(a) -> g(b) b -> f(a, a) f(a, a) -> g(d) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(d) -> d encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_b) -> b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_b -> b encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_d -> d ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: g(a) -> g(b) b -> f(a, a) f(a, a) -> g(d) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(d) -> d encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_b) -> b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_b -> b encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_d -> d Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: g(a) -> g(b) b -> f(a, a) f(a, a) -> g(d) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(d) -> d encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_b) -> b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_b -> b encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_d -> d Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: g(a) -> g(b) b -> f(a, a) f(a, a) -> g(d) encArg(a) -> a encArg(d) -> d encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_b) -> b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_b -> b encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_d -> d S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 4. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9] transitions: a0() -> 0 d0() -> 0 cons_g0(0) -> 0 cons_b0() -> 0 cons_f0(0, 0) -> 0 g0(0) -> 1 b0() -> 2 f0(0, 0) -> 3 encArg0(0) -> 4 encode_g0(0) -> 5 encode_a0() -> 6 encode_b0() -> 7 encode_f0(0, 0) -> 8 encode_d0() -> 9 b1() -> 10 g1(10) -> 1 a1() -> 11 a1() -> 12 f1(11, 12) -> 2 d1() -> 13 g1(13) -> 3 a1() -> 4 d1() -> 4 encArg1(0) -> 14 g1(14) -> 4 b1() -> 4 encArg1(0) -> 15 encArg1(0) -> 16 f1(15, 16) -> 4 g1(14) -> 5 a1() -> 6 b1() -> 7 f1(15, 16) -> 8 d1() -> 9 a2() -> 17 a2() -> 18 f2(17, 18) -> 4 f2(17, 18) -> 7 f2(17, 18) -> 10 d2() -> 19 g2(19) -> 2 a1() -> 14 a1() -> 15 a1() -> 16 d1() -> 14 d1() -> 15 d1() -> 16 g1(14) -> 14 g1(14) -> 15 g1(14) -> 16 b1() -> 14 b1() -> 15 b1() -> 16 f1(15, 16) -> 14 f1(15, 16) -> 15 f1(15, 16) -> 16 b2() -> 20 g2(20) -> 4 g2(20) -> 5 g2(20) -> 14 g2(20) -> 15 g2(20) -> 16 f2(17, 18) -> 14 f2(17, 18) -> 15 f2(17, 18) -> 16 g2(19) -> 4 g2(19) -> 8 g2(19) -> 14 g2(19) -> 15 g2(19) -> 16 d3() -> 21 g3(21) -> 4 g3(21) -> 7 g3(21) -> 10 g3(21) -> 14 g3(21) -> 15 g3(21) -> 16 a3() -> 22 a3() -> 23 f3(22, 23) -> 20 d4() -> 24 g4(24) -> 20 ---------------------------------------- (8) BOUNDS(1, n^1)