/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 164 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 1976 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 72 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x, 0, 0) -> s(x) f(0, y, 0) -> s(y) f(0, 0, z) -> s(z) f(s(0), y, z) -> f(0, s(y), s(z)) f(s(x), s(y), 0) -> f(x, y, s(0)) f(s(x), 0, s(z)) -> f(x, s(0), z) f(0, s(0), s(0)) -> s(s(0)) f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z)) f(0, s(s(y)), s(0)) -> f(0, y, s(0)) f(0, s(0), s(s(z))) -> f(0, s(0), z) f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x, 0, 0) -> s(x) f(0, y, 0) -> s(y) f(0, 0, z) -> s(z) f(s(0), y, z) -> f(0, s(y), s(z)) f(s(x), s(y), 0) -> f(x, y, s(0)) f(s(x), 0, s(z)) -> f(x, s(0), z) f(0, s(0), s(0)) -> s(s(0)) f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z)) f(0, s(s(y)), s(0)) -> f(0, y, s(0)) f(0, s(0), s(s(z))) -> f(0, s(0), z) f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x, 0, 0) -> s(x) f(0, y, 0) -> s(y) f(0, 0, z) -> s(z) f(s(0), y, z) -> f(0, s(y), s(z)) f(s(x), s(y), 0) -> f(x, y, s(0)) f(s(x), 0, s(z)) -> f(x, s(0), z) f(0, s(0), s(0)) -> s(s(0)) f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z)) f(0, s(s(y)), s(0)) -> f(0, y, s(0)) f(0, s(0), s(s(z))) -> f(0, s(0), z) f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x, 0', 0') -> s(x) f(0', y, 0') -> s(y) f(0', 0', z) -> s(z) f(s(0'), y, z) -> f(0', s(y), s(z)) f(s(x), s(y), 0') -> f(x, y, s(0')) f(s(x), 0', s(z)) -> f(x, s(0'), z) f(0', s(0'), s(0')) -> s(s(0')) f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z)) f(0', s(s(y)), s(0')) -> f(0', y, s(0')) f(0', s(0'), s(s(z))) -> f(0', s(0'), z) f(0', s(s(y)), s(s(z))) -> f(0', y, f(0', s(s(y)), s(z))) The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: f(x, 0', 0') -> s(x) f(0', y, 0') -> s(y) f(0', 0', z) -> s(z) f(s(0'), y, z) -> f(0', s(y), s(z)) f(s(x), s(y), 0') -> f(x, y, s(0')) f(s(x), 0', s(z)) -> f(x, s(0'), z) f(0', s(0'), s(0')) -> s(s(0')) f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z)) f(0', s(s(y)), s(0')) -> f(0', y, s(0')) f(0', s(0'), s(s(z))) -> f(0', s(0'), z) f(0', s(s(y)), s(s(z))) -> f(0', y, f(0', s(s(y)), s(z))) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) Types: f :: 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f 0' :: 0':s:cons_f s :: 0':s:cons_f -> 0':s:cons_f encArg :: 0':s:cons_f -> 0':s:cons_f cons_f :: 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f encode_f :: 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f encode_0 :: 0':s:cons_f encode_s :: 0':s:cons_f -> 0':s:cons_f hole_0':s:cons_f1_4 :: 0':s:cons_f gen_0':s:cons_f2_4 :: Nat -> 0':s:cons_f ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: f(x, 0', 0') -> s(x) f(0', y, 0') -> s(y) f(0', 0', z) -> s(z) f(s(0'), y, z) -> f(0', s(y), s(z)) f(s(x), s(y), 0') -> f(x, y, s(0')) f(s(x), 0', s(z)) -> f(x, s(0'), z) f(0', s(0'), s(0')) -> s(s(0')) f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z)) f(0', s(s(y)), s(0')) -> f(0', y, s(0')) f(0', s(0'), s(s(z))) -> f(0', s(0'), z) f(0', s(s(y)), s(s(z))) -> f(0', y, f(0', s(s(y)), s(z))) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) Types: f :: 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f 0' :: 0':s:cons_f s :: 0':s:cons_f -> 0':s:cons_f encArg :: 0':s:cons_f -> 0':s:cons_f cons_f :: 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f encode_f :: 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f encode_0 :: 0':s:cons_f encode_s :: 0':s:cons_f -> 0':s:cons_f hole_0':s:cons_f1_4 :: 0':s:cons_f gen_0':s:cons_f2_4 :: Nat -> 0':s:cons_f Generator Equations: gen_0':s:cons_f2_4(0) <=> 0' gen_0':s:cons_f2_4(+(x, 1)) <=> s(gen_0':s:cons_f2_4(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_0':s:cons_f2_4(0), gen_0':s:cons_f2_4(+(1, *(2, n4_4))), gen_0':s:cons_f2_4(1)) -> gen_0':s:cons_f2_4(2), rt in Omega(1 + n4_4) Induction Base: f(gen_0':s:cons_f2_4(0), gen_0':s:cons_f2_4(+(1, *(2, 0))), gen_0':s:cons_f2_4(1)) ->_R^Omega(1) s(s(0')) Induction Step: f(gen_0':s:cons_f2_4(0), gen_0':s:cons_f2_4(+(1, *(2, +(n4_4, 1)))), gen_0':s:cons_f2_4(1)) ->_R^Omega(1) f(0', gen_0':s:cons_f2_4(+(1, *(2, n4_4))), s(0')) ->_IH gen_0':s:cons_f2_4(2) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: f(x, 0', 0') -> s(x) f(0', y, 0') -> s(y) f(0', 0', z) -> s(z) f(s(0'), y, z) -> f(0', s(y), s(z)) f(s(x), s(y), 0') -> f(x, y, s(0')) f(s(x), 0', s(z)) -> f(x, s(0'), z) f(0', s(0'), s(0')) -> s(s(0')) f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z)) f(0', s(s(y)), s(0')) -> f(0', y, s(0')) f(0', s(0'), s(s(z))) -> f(0', s(0'), z) f(0', s(s(y)), s(s(z))) -> f(0', y, f(0', s(s(y)), s(z))) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) Types: f :: 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f 0' :: 0':s:cons_f s :: 0':s:cons_f -> 0':s:cons_f encArg :: 0':s:cons_f -> 0':s:cons_f cons_f :: 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f encode_f :: 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f encode_0 :: 0':s:cons_f encode_s :: 0':s:cons_f -> 0':s:cons_f hole_0':s:cons_f1_4 :: 0':s:cons_f gen_0':s:cons_f2_4 :: Nat -> 0':s:cons_f Generator Equations: gen_0':s:cons_f2_4(0) <=> 0' gen_0':s:cons_f2_4(+(x, 1)) <=> s(gen_0':s:cons_f2_4(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: f(x, 0', 0') -> s(x) f(0', y, 0') -> s(y) f(0', 0', z) -> s(z) f(s(0'), y, z) -> f(0', s(y), s(z)) f(s(x), s(y), 0') -> f(x, y, s(0')) f(s(x), 0', s(z)) -> f(x, s(0'), z) f(0', s(0'), s(0')) -> s(s(0')) f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z)) f(0', s(s(y)), s(0')) -> f(0', y, s(0')) f(0', s(0'), s(s(z))) -> f(0', s(0'), z) f(0', s(s(y)), s(s(z))) -> f(0', y, f(0', s(s(y)), s(z))) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) Types: f :: 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f 0' :: 0':s:cons_f s :: 0':s:cons_f -> 0':s:cons_f encArg :: 0':s:cons_f -> 0':s:cons_f cons_f :: 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f encode_f :: 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f -> 0':s:cons_f encode_0 :: 0':s:cons_f encode_s :: 0':s:cons_f -> 0':s:cons_f hole_0':s:cons_f1_4 :: 0':s:cons_f gen_0':s:cons_f2_4 :: Nat -> 0':s:cons_f Lemmas: f(gen_0':s:cons_f2_4(0), gen_0':s:cons_f2_4(+(1, *(2, n4_4))), gen_0':s:cons_f2_4(1)) -> gen_0':s:cons_f2_4(2), rt in Omega(1 + n4_4) Generator Equations: gen_0':s:cons_f2_4(0) <=> 0' gen_0':s:cons_f2_4(+(x, 1)) <=> s(gen_0':s:cons_f2_4(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':s:cons_f2_4(n209277_4)) -> gen_0':s:cons_f2_4(n209277_4), rt in Omega(0) Induction Base: encArg(gen_0':s:cons_f2_4(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':s:cons_f2_4(+(n209277_4, 1))) ->_R^Omega(0) s(encArg(gen_0':s:cons_f2_4(n209277_4))) ->_IH s(gen_0':s:cons_f2_4(c209278_4)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)