/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 194 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 3 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 370 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 95 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 1138 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 1685 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 139 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 688 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 324 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 137 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) FinalProof [FINISHED, 0 ms] (50) BOUNDS(1, n^2) (51) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (52) TRS for Loop Detection (53) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (54) BEST (55) proven lower bound (56) LowerBoundPropagationProof [FINISHED, 0 ms] (57) BOUNDS(n^1, INF) (58) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(x, g(x)) -> x f(x, h(y)) -> f(h(x), y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(g(x_1)) -> g(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(x, g(x)) -> x f(x, h(y)) -> f(h(x), y) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(x, g(x)) -> x f(x, h(y)) -> f(h(x), y) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(x, g(x)) -> x [1] f(x, h(y)) -> f(h(x), y) [1] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(h(x_1)) -> h(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_h(x_1) -> h(encArg(x_1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, g(x)) -> x [1] f(x, h(y)) -> f(h(x), y) [1] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(h(x_1)) -> h(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_h(x_1) -> h(encArg(x_1)) [0] The TRS has the following type information: f :: g:h:cons_f -> g:h:cons_f -> g:h:cons_f g :: g:h:cons_f -> g:h:cons_f h :: g:h:cons_f -> g:h:cons_f encArg :: g:h:cons_f -> g:h:cons_f cons_f :: g:h:cons_f -> g:h:cons_f -> g:h:cons_f encode_f :: g:h:cons_f -> g:h:cons_f -> g:h:cons_f encode_g :: g:h:cons_f -> g:h:cons_f encode_h :: g:h:cons_f -> g:h:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: f_2 encArg_1 encode_f_2 encode_g_1 encode_h_1 Due to the following rules being added: encArg(v0) -> const [0] encode_f(v0, v1) -> const [0] encode_g(v0) -> const [0] encode_h(v0) -> const [0] f(v0, v1) -> const [0] And the following fresh constants: const ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, g(x)) -> x [1] f(x, h(y)) -> f(h(x), y) [1] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(h(x_1)) -> h(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_h(x_1) -> h(encArg(x_1)) [0] encArg(v0) -> const [0] encode_f(v0, v1) -> const [0] encode_g(v0) -> const [0] encode_h(v0) -> const [0] f(v0, v1) -> const [0] The TRS has the following type information: f :: g:h:cons_f:const -> g:h:cons_f:const -> g:h:cons_f:const g :: g:h:cons_f:const -> g:h:cons_f:const h :: g:h:cons_f:const -> g:h:cons_f:const encArg :: g:h:cons_f:const -> g:h:cons_f:const cons_f :: g:h:cons_f:const -> g:h:cons_f:const -> g:h:cons_f:const encode_f :: g:h:cons_f:const -> g:h:cons_f:const -> g:h:cons_f:const encode_g :: g:h:cons_f:const -> g:h:cons_f:const encode_h :: g:h:cons_f:const -> g:h:cons_f:const const :: g:h:cons_f:const Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, g(x)) -> x [1] f(x, h(y)) -> f(h(x), y) [1] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(h(x_1)) -> h(encArg(x_1)) [0] encArg(cons_f(g(x_1'), g(x_12))) -> f(g(encArg(x_1')), g(encArg(x_12))) [0] encArg(cons_f(g(x_1'), h(x_13))) -> f(g(encArg(x_1')), h(encArg(x_13))) [0] encArg(cons_f(g(x_1'), cons_f(x_14, x_2''))) -> f(g(encArg(x_1')), f(encArg(x_14), encArg(x_2''))) [0] encArg(cons_f(g(x_1'), x_2)) -> f(g(encArg(x_1')), const) [0] encArg(cons_f(h(x_1''), g(x_15))) -> f(h(encArg(x_1'')), g(encArg(x_15))) [0] encArg(cons_f(h(x_1''), h(x_16))) -> f(h(encArg(x_1'')), h(encArg(x_16))) [0] encArg(cons_f(h(x_1''), cons_f(x_17, x_21))) -> f(h(encArg(x_1'')), f(encArg(x_17), encArg(x_21))) [0] encArg(cons_f(h(x_1''), x_2)) -> f(h(encArg(x_1'')), const) [0] encArg(cons_f(cons_f(x_11, x_2'), g(x_18))) -> f(f(encArg(x_11), encArg(x_2')), g(encArg(x_18))) [0] encArg(cons_f(cons_f(x_11, x_2'), h(x_19))) -> f(f(encArg(x_11), encArg(x_2')), h(encArg(x_19))) [0] encArg(cons_f(cons_f(x_11, x_2'), cons_f(x_110, x_22))) -> f(f(encArg(x_11), encArg(x_2')), f(encArg(x_110), encArg(x_22))) [0] encArg(cons_f(cons_f(x_11, x_2'), x_2)) -> f(f(encArg(x_11), encArg(x_2')), const) [0] encArg(cons_f(x_1, g(x_111))) -> f(const, g(encArg(x_111))) [0] encArg(cons_f(x_1, h(x_112))) -> f(const, h(encArg(x_112))) [0] encArg(cons_f(x_1, cons_f(x_113, x_23))) -> f(const, f(encArg(x_113), encArg(x_23))) [0] encArg(cons_f(x_1, x_2)) -> f(const, const) [0] encode_f(g(x_114), g(x_117)) -> f(g(encArg(x_114)), g(encArg(x_117))) [0] encode_f(g(x_114), h(x_118)) -> f(g(encArg(x_114)), h(encArg(x_118))) [0] encode_f(g(x_114), cons_f(x_119, x_25)) -> f(g(encArg(x_114)), f(encArg(x_119), encArg(x_25))) [0] encode_f(g(x_114), x_2) -> f(g(encArg(x_114)), const) [0] encode_f(h(x_115), g(x_120)) -> f(h(encArg(x_115)), g(encArg(x_120))) [0] encode_f(h(x_115), h(x_121)) -> f(h(encArg(x_115)), h(encArg(x_121))) [0] encode_f(h(x_115), cons_f(x_122, x_26)) -> f(h(encArg(x_115)), f(encArg(x_122), encArg(x_26))) [0] encode_f(h(x_115), x_2) -> f(h(encArg(x_115)), const) [0] encode_f(cons_f(x_116, x_24), g(x_123)) -> f(f(encArg(x_116), encArg(x_24)), g(encArg(x_123))) [0] encode_f(cons_f(x_116, x_24), h(x_124)) -> f(f(encArg(x_116), encArg(x_24)), h(encArg(x_124))) [0] encode_f(cons_f(x_116, x_24), cons_f(x_125, x_27)) -> f(f(encArg(x_116), encArg(x_24)), f(encArg(x_125), encArg(x_27))) [0] encode_f(cons_f(x_116, x_24), x_2) -> f(f(encArg(x_116), encArg(x_24)), const) [0] encode_f(x_1, g(x_126)) -> f(const, g(encArg(x_126))) [0] encode_f(x_1, h(x_127)) -> f(const, h(encArg(x_127))) [0] encode_f(x_1, cons_f(x_128, x_28)) -> f(const, f(encArg(x_128), encArg(x_28))) [0] encode_f(x_1, x_2) -> f(const, const) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_h(x_1) -> h(encArg(x_1)) [0] encArg(v0) -> const [0] encode_f(v0, v1) -> const [0] encode_g(v0) -> const [0] encode_h(v0) -> const [0] f(v0, v1) -> const [0] The TRS has the following type information: f :: g:h:cons_f:const -> g:h:cons_f:const -> g:h:cons_f:const g :: g:h:cons_f:const -> g:h:cons_f:const h :: g:h:cons_f:const -> g:h:cons_f:const encArg :: g:h:cons_f:const -> g:h:cons_f:const cons_f :: g:h:cons_f:const -> g:h:cons_f:const -> g:h:cons_f:const encode_f :: g:h:cons_f:const -> g:h:cons_f:const -> g:h:cons_f:const encode_g :: g:h:cons_f:const -> g:h:cons_f:const encode_h :: g:h:cons_f:const -> g:h:cons_f:const const :: g:h:cons_f:const Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), f(encArg(x_110), encArg(x_22))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 0) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_18)) :|: x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_19)) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_113), encArg(x_23))) :|: x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_111)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_112)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_2''))) :|: z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_12)) :|: z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), f(encArg(x_17), encArg(x_21))) :|: x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 0) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_15)) :|: x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_16)) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), f(encArg(x_125), encArg(x_27))) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 0) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, x_2 >= 0, z' = x_2 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 1 + encArg(x_123)) :|: z = 1 + x_116 + x_24, z' = 1 + x_123, x_123 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 1 + encArg(x_124)) :|: z = 1 + x_116 + x_24, z' = 1 + x_124, x_124 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_128), encArg(x_28))) :|: x_1 >= 0, x_128 >= 0, z = x_1, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(x_126)) :|: x_1 >= 0, z' = 1 + x_126, x_126 >= 0, z = x_1 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(x_127)) :|: x_1 >= 0, x_127 >= 0, z' = 1 + x_127, z = x_1 encode_f(z, z') -{ 0 }-> f(1 + encArg(x_114), f(encArg(x_119), encArg(x_25))) :|: z' = 1 + x_119 + x_25, x_114 >= 0, x_25 >= 0, z = 1 + x_114, x_119 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(x_114), 0) :|: x_114 >= 0, x_2 >= 0, z' = x_2, z = 1 + x_114 encode_f(z, z') -{ 0 }-> f(1 + encArg(x_114), 1 + encArg(x_117)) :|: x_117 >= 0, x_114 >= 0, z' = 1 + x_117, z = 1 + x_114 encode_f(z, z') -{ 0 }-> f(1 + encArg(x_114), 1 + encArg(x_118)) :|: x_114 >= 0, z' = 1 + x_118, z = 1 + x_114, x_118 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(x_115), f(encArg(x_122), encArg(x_26))) :|: x_26 >= 0, x_115 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0, z = 1 + x_115 encode_f(z, z') -{ 0 }-> f(1 + encArg(x_115), 0) :|: x_115 >= 0, x_2 >= 0, z = 1 + x_115, z' = x_2 encode_f(z, z') -{ 0 }-> f(1 + encArg(x_115), 1 + encArg(x_120)) :|: x_120 >= 0, x_115 >= 0, z = 1 + x_115, z' = 1 + x_120 encode_f(z, z') -{ 0 }-> f(1 + encArg(x_115), 1 + encArg(x_121)) :|: x_115 >= 0, z = 1 + x_115, z' = 1 + x_121, x_121 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_g(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 encode_h(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_h(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 f(z, z') -{ 1 }-> x :|: z' = 1 + x, x >= 0, z = x f(z, z') -{ 1 }-> f(1 + x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = x f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), f(encArg(x_110), encArg(x_22))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 0) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_18)) :|: x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_19)) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_113), encArg(x_23))) :|: x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_111)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_112)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_2''))) :|: z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_12)) :|: z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), f(encArg(x_17), encArg(x_21))) :|: x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 0) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_15)) :|: x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_16)) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), f(encArg(x_125), encArg(x_27))) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 0) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 1 + encArg(z' - 1)) :|: z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_128), encArg(x_28))) :|: z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_119), encArg(x_25))) :|: z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_122), encArg(x_26))) :|: x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z - 1 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> f(1 + z, z' - 1) :|: z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { f } { encArg } { encode_h } { encode_f } { encode_g } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), f(encArg(x_110), encArg(x_22))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 0) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_18)) :|: x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_19)) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_113), encArg(x_23))) :|: x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_111)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_112)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_2''))) :|: z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_12)) :|: z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), f(encArg(x_17), encArg(x_21))) :|: x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 0) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_15)) :|: x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_16)) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), f(encArg(x_125), encArg(x_27))) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 0) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 1 + encArg(z' - 1)) :|: z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_128), encArg(x_28))) :|: z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_119), encArg(x_25))) :|: z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_122), encArg(x_26))) :|: x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z - 1 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> f(1 + z, z' - 1) :|: z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: {f}, {encArg}, {encode_h}, {encode_f}, {encode_g} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), f(encArg(x_110), encArg(x_22))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 0) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_18)) :|: x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_19)) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_113), encArg(x_23))) :|: x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_111)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_112)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_2''))) :|: z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_12)) :|: z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), f(encArg(x_17), encArg(x_21))) :|: x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 0) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_15)) :|: x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_16)) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), f(encArg(x_125), encArg(x_27))) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 0) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 1 + encArg(z' - 1)) :|: z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_128), encArg(x_28))) :|: z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_119), encArg(x_25))) :|: z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_122), encArg(x_26))) :|: x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z - 1 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> f(1 + z, z' - 1) :|: z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: {f}, {encArg}, {encode_h}, {encode_f}, {encode_g} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), f(encArg(x_110), encArg(x_22))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 0) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_18)) :|: x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_19)) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_113), encArg(x_23))) :|: x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_111)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_112)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_2''))) :|: z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_12)) :|: z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), f(encArg(x_17), encArg(x_21))) :|: x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 0) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_15)) :|: x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_16)) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), f(encArg(x_125), encArg(x_27))) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 0) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 1 + encArg(z' - 1)) :|: z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_128), encArg(x_28))) :|: z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_119), encArg(x_25))) :|: z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_122), encArg(x_26))) :|: x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z - 1 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> f(1 + z, z' - 1) :|: z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: {f}, {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: f: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), f(encArg(x_110), encArg(x_22))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 0) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_18)) :|: x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_19)) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_113), encArg(x_23))) :|: x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_111)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_112)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_2''))) :|: z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_12)) :|: z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), f(encArg(x_17), encArg(x_21))) :|: x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 0) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_15)) :|: x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_16)) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), f(encArg(x_125), encArg(x_27))) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 0) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 1 + encArg(z' - 1)) :|: z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_128), encArg(x_28))) :|: z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_119), encArg(x_25))) :|: z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_122), encArg(x_26))) :|: x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z - 1 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> f(1 + z, z' - 1) :|: z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: f: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), f(encArg(x_110), encArg(x_22))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 0) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_18)) :|: x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_19)) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_113), encArg(x_23))) :|: x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 0 }-> f(0, 1 + encArg(x_111)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_112)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_2''))) :|: z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_12)) :|: z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), f(encArg(x_17), encArg(x_21))) :|: x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 0) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_15)) :|: x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_16)) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z') -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), f(encArg(x_125), encArg(x_27))) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 0) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 1 + encArg(z' - 1)) :|: z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_128), encArg(x_28))) :|: z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_119), encArg(x_25))) :|: z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_122), encArg(x_26))) :|: x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z - 1 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z' - 1, z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: f: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), f(encArg(x_110), encArg(x_22))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 0) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_18)) :|: x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_19)) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_113), encArg(x_23))) :|: x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 0 }-> f(0, 1 + encArg(x_111)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_112)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_2''))) :|: z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_12)) :|: z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), f(encArg(x_17), encArg(x_21))) :|: x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 0) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_15)) :|: x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_16)) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z') -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), f(encArg(x_125), encArg(x_27))) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 0) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 1 + encArg(z' - 1)) :|: z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_128), encArg(x_28))) :|: z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_119), encArg(x_25))) :|: z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_122), encArg(x_26))) :|: x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z - 1 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z' - 1, z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: {encArg}, {encode_h}, {encode_f}, {encode_g} Previous analysis results are: f: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encArg: runtime: ?, size: O(n^1) [z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 11*z + 6*z^2 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), f(encArg(x_110), encArg(x_22))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 0) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_18)) :|: x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 0 }-> f(f(encArg(x_11), encArg(x_2')), 1 + encArg(x_19)) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_113), encArg(x_23))) :|: x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 0 }-> f(0, 1 + encArg(x_111)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_112)) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_2''))) :|: z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_12)) :|: z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), f(encArg(x_17), encArg(x_21))) :|: x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 0) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_15)) :|: x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 0 }-> f(1 + encArg(x_1''), 1 + encArg(x_16)) :|: x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z') -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), f(encArg(x_125), encArg(x_27))) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 0) :|: z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_116), encArg(x_24)), 1 + encArg(z' - 1)) :|: z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_128), encArg(x_28))) :|: z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_119), encArg(x_25))) :|: z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_122), encArg(x_26))) :|: x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z - 1 >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z' - 1, z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: {encode_h}, {encode_f}, {encode_g} Previous analysis results are: f: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encArg: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [z] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + s10 + s11 + 11*x_1' + 6*x_1'^2 + 11*x_14 + 6*x_14^2 + 11*x_2'' + 6*x_2''^2 }-> s12 :|: s8 >= 0, s8 <= x_1', s9 >= 0, s9 <= x_14, s10 >= 0, s10 <= x_2'', s11 >= 0, s11 <= s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 2 + 11*x_1' + 6*x_1'^2 }-> s14 :|: s13 >= 0, s13 <= x_1', s14 >= 0, s14 <= 0, x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 4 + s16 + 11*x_1'' + 6*x_1''^2 + 11*x_15 + 6*x_15^2 }-> s17 :|: s15 >= 0, s15 <= x_1'', s16 >= 0, s16 <= x_15, s17 >= 0, s17 <= 1 + s16, x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 4 + s19 + 11*x_1'' + 6*x_1''^2 + 11*x_16 + 6*x_16^2 }-> s20 :|: s18 >= 0, s18 <= x_1'', s19 >= 0, s19 <= x_16, s20 >= 0, s20 <= 1 + s19, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 5 + s23 + s24 + 11*x_1'' + 6*x_1''^2 + 11*x_17 + 6*x_17^2 + 11*x_21 + 6*x_21^2 }-> s25 :|: s21 >= 0, s21 <= x_1'', s22 >= 0, s22 <= x_17, s23 >= 0, s23 <= x_21, s24 >= 0, s24 <= s23, s25 >= 0, s25 <= s24, x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 2 + 11*x_1'' + 6*x_1''^2 }-> s27 :|: s26 >= 0, s26 <= x_1'', s27 >= 0, s27 <= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 6 + s29 + s31 + 11*x_11 + 6*x_11^2 + 11*x_18 + 6*x_18^2 + 11*x_2' + 6*x_2'^2 }-> s32 :|: s28 >= 0, s28 <= x_11, s29 >= 0, s29 <= x_2', s30 >= 0, s30 <= s29, s31 >= 0, s31 <= x_18, s32 >= 0, s32 <= 1 + s31, x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 6 + s34 + s36 + 11*x_11 + 6*x_11^2 + 11*x_19 + 6*x_19^2 + 11*x_2' + 6*x_2'^2 }-> s37 :|: s33 >= 0, s33 <= x_11, s34 >= 0, s34 <= x_2', s35 >= 0, s35 <= s34, s36 >= 0, s36 <= x_19, s37 >= 0, s37 <= 1 + s36, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 4 + s3 + 11*x_1' + 6*x_1'^2 + 11*x_12 + 6*x_12^2 }-> s4 :|: s2 >= 0, s2 <= x_1', s3 >= 0, s3 <= x_12, s4 >= 0, s4 <= 1 + s3, z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 7 + s39 + s42 + s43 + 11*x_11 + 6*x_11^2 + 11*x_110 + 6*x_110^2 + 11*x_2' + 6*x_2'^2 + 11*x_22 + 6*x_22^2 }-> s44 :|: s38 >= 0, s38 <= x_11, s39 >= 0, s39 <= x_2', s40 >= 0, s40 <= s39, s41 >= 0, s41 <= x_110, s42 >= 0, s42 <= x_22, s43 >= 0, s43 <= s42, s44 >= 0, s44 <= s43, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 4 + s46 + 11*x_11 + 6*x_11^2 + 11*x_2' + 6*x_2'^2 }-> s48 :|: s45 >= 0, s45 <= x_11, s46 >= 0, s46 <= x_2', s47 >= 0, s47 <= s46, s48 >= 0, s48 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 3 + s49 + 11*x_111 + 6*x_111^2 }-> s50 :|: s49 >= 0, s49 <= x_111, s50 >= 0, s50 <= 1 + s49, x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 3 + s51 + 11*x_112 + 6*x_112^2 }-> s52 :|: s51 >= 0, s51 <= x_112, s52 >= 0, s52 <= 1 + s51, x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 4 + s54 + s55 + 11*x_113 + 6*x_113^2 + 11*x_23 + 6*x_23^2 }-> s56 :|: s53 >= 0, s53 <= x_113, s54 >= 0, s54 <= x_23, s55 >= 0, s55 <= s54, s56 >= 0, s56 <= s55, x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 4 + s6 + 11*x_1' + 6*x_1'^2 + 11*x_13 + 6*x_13^2 }-> s7 :|: s5 >= 0, s5 <= x_1', s6 >= 0, s6 <= x_13, s7 >= 0, s7 <= 1 + s6, z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -4 + -1*z + 6*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1, z - 1 >= 0 encode_f(z, z') -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ -6 + s58 + -1*z + 6*z^2 + -1*z' + 6*z'^2 }-> s59 :|: s57 >= 0, s57 <= z - 1, s58 >= 0, s58 <= z' - 1, s59 >= 0, s59 <= 1 + s58, z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ s62 + s63 + 11*x_119 + 6*x_119^2 + 11*x_25 + 6*x_25^2 + -1*z + 6*z^2 }-> s64 :|: s60 >= 0, s60 <= z - 1, s61 >= 0, s61 <= x_119, s62 >= 0, s62 <= x_25, s63 >= 0, s63 <= s62, s64 >= 0, s64 <= s63, z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ -3 + -1*z + 6*z^2 }-> s66 :|: s65 >= 0, s65 <= z - 1, s66 >= 0, s66 <= 0, z - 1 >= 0, z' >= 0 encode_f(z, z') -{ s69 + s70 + 11*x_122 + 6*x_122^2 + 11*x_26 + 6*x_26^2 + -1*z + 6*z^2 }-> s71 :|: s67 >= 0, s67 <= z - 1, s68 >= 0, s68 <= x_122, s69 >= 0, s69 <= x_26, s70 >= 0, s70 <= s69, s71 >= 0, s71 <= s70, x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 1 + s73 + s75 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 + -1*z' + 6*z'^2 }-> s76 :|: s72 >= 0, s72 <= x_116, s73 >= 0, s73 <= x_24, s74 >= 0, s74 <= s73, s75 >= 0, s75 <= z' - 1, s76 >= 0, s76 <= 1 + s75, z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 7 + s78 + s81 + s82 + 11*x_116 + 6*x_116^2 + 11*x_125 + 6*x_125^2 + 11*x_24 + 6*x_24^2 + 11*x_27 + 6*x_27^2 }-> s83 :|: s77 >= 0, s77 <= x_116, s78 >= 0, s78 <= x_24, s79 >= 0, s79 <= s78, s80 >= 0, s80 <= x_125, s81 >= 0, s81 <= x_27, s82 >= 0, s82 <= s81, s83 >= 0, s83 <= s82, z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 4 + s85 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 }-> s87 :|: s84 >= 0, s84 <= x_116, s85 >= 0, s85 <= x_24, s86 >= 0, s86 <= s85, s87 >= 0, s87 <= 0, z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ -2 + s88 + -1*z' + 6*z'^2 }-> s89 :|: s88 >= 0, s88 <= z' - 1, s89 >= 0, s89 <= 1 + s88, z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s91 + s92 + 11*x_128 + 6*x_128^2 + 11*x_28 + 6*x_28^2 }-> s93 :|: s90 >= 0, s90 <= x_128, s91 >= 0, s91 <= x_28, s92 >= 0, s92 <= s91, s93 >= 0, s93 <= s92, z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s94 :|: s94 >= 0, s94 <= z, z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s95 :|: s95 >= 0, s95 <= z, z >= 0 f(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z' - 1, z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: {encode_h}, {encode_f}, {encode_g} Previous analysis results are: f: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encArg: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [z] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_h after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + s10 + s11 + 11*x_1' + 6*x_1'^2 + 11*x_14 + 6*x_14^2 + 11*x_2'' + 6*x_2''^2 }-> s12 :|: s8 >= 0, s8 <= x_1', s9 >= 0, s9 <= x_14, s10 >= 0, s10 <= x_2'', s11 >= 0, s11 <= s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 2 + 11*x_1' + 6*x_1'^2 }-> s14 :|: s13 >= 0, s13 <= x_1', s14 >= 0, s14 <= 0, x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 4 + s16 + 11*x_1'' + 6*x_1''^2 + 11*x_15 + 6*x_15^2 }-> s17 :|: s15 >= 0, s15 <= x_1'', s16 >= 0, s16 <= x_15, s17 >= 0, s17 <= 1 + s16, x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 4 + s19 + 11*x_1'' + 6*x_1''^2 + 11*x_16 + 6*x_16^2 }-> s20 :|: s18 >= 0, s18 <= x_1'', s19 >= 0, s19 <= x_16, s20 >= 0, s20 <= 1 + s19, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 5 + s23 + s24 + 11*x_1'' + 6*x_1''^2 + 11*x_17 + 6*x_17^2 + 11*x_21 + 6*x_21^2 }-> s25 :|: s21 >= 0, s21 <= x_1'', s22 >= 0, s22 <= x_17, s23 >= 0, s23 <= x_21, s24 >= 0, s24 <= s23, s25 >= 0, s25 <= s24, x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 2 + 11*x_1'' + 6*x_1''^2 }-> s27 :|: s26 >= 0, s26 <= x_1'', s27 >= 0, s27 <= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 6 + s29 + s31 + 11*x_11 + 6*x_11^2 + 11*x_18 + 6*x_18^2 + 11*x_2' + 6*x_2'^2 }-> s32 :|: s28 >= 0, s28 <= x_11, s29 >= 0, s29 <= x_2', s30 >= 0, s30 <= s29, s31 >= 0, s31 <= x_18, s32 >= 0, s32 <= 1 + s31, x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 6 + s34 + s36 + 11*x_11 + 6*x_11^2 + 11*x_19 + 6*x_19^2 + 11*x_2' + 6*x_2'^2 }-> s37 :|: s33 >= 0, s33 <= x_11, s34 >= 0, s34 <= x_2', s35 >= 0, s35 <= s34, s36 >= 0, s36 <= x_19, s37 >= 0, s37 <= 1 + s36, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 4 + s3 + 11*x_1' + 6*x_1'^2 + 11*x_12 + 6*x_12^2 }-> s4 :|: s2 >= 0, s2 <= x_1', s3 >= 0, s3 <= x_12, s4 >= 0, s4 <= 1 + s3, z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 7 + s39 + s42 + s43 + 11*x_11 + 6*x_11^2 + 11*x_110 + 6*x_110^2 + 11*x_2' + 6*x_2'^2 + 11*x_22 + 6*x_22^2 }-> s44 :|: s38 >= 0, s38 <= x_11, s39 >= 0, s39 <= x_2', s40 >= 0, s40 <= s39, s41 >= 0, s41 <= x_110, s42 >= 0, s42 <= x_22, s43 >= 0, s43 <= s42, s44 >= 0, s44 <= s43, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 4 + s46 + 11*x_11 + 6*x_11^2 + 11*x_2' + 6*x_2'^2 }-> s48 :|: s45 >= 0, s45 <= x_11, s46 >= 0, s46 <= x_2', s47 >= 0, s47 <= s46, s48 >= 0, s48 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 3 + s49 + 11*x_111 + 6*x_111^2 }-> s50 :|: s49 >= 0, s49 <= x_111, s50 >= 0, s50 <= 1 + s49, x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 3 + s51 + 11*x_112 + 6*x_112^2 }-> s52 :|: s51 >= 0, s51 <= x_112, s52 >= 0, s52 <= 1 + s51, x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 4 + s54 + s55 + 11*x_113 + 6*x_113^2 + 11*x_23 + 6*x_23^2 }-> s56 :|: s53 >= 0, s53 <= x_113, s54 >= 0, s54 <= x_23, s55 >= 0, s55 <= s54, s56 >= 0, s56 <= s55, x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 4 + s6 + 11*x_1' + 6*x_1'^2 + 11*x_13 + 6*x_13^2 }-> s7 :|: s5 >= 0, s5 <= x_1', s6 >= 0, s6 <= x_13, s7 >= 0, s7 <= 1 + s6, z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -4 + -1*z + 6*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1, z - 1 >= 0 encode_f(z, z') -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ -6 + s58 + -1*z + 6*z^2 + -1*z' + 6*z'^2 }-> s59 :|: s57 >= 0, s57 <= z - 1, s58 >= 0, s58 <= z' - 1, s59 >= 0, s59 <= 1 + s58, z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ s62 + s63 + 11*x_119 + 6*x_119^2 + 11*x_25 + 6*x_25^2 + -1*z + 6*z^2 }-> s64 :|: s60 >= 0, s60 <= z - 1, s61 >= 0, s61 <= x_119, s62 >= 0, s62 <= x_25, s63 >= 0, s63 <= s62, s64 >= 0, s64 <= s63, z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ -3 + -1*z + 6*z^2 }-> s66 :|: s65 >= 0, s65 <= z - 1, s66 >= 0, s66 <= 0, z - 1 >= 0, z' >= 0 encode_f(z, z') -{ s69 + s70 + 11*x_122 + 6*x_122^2 + 11*x_26 + 6*x_26^2 + -1*z + 6*z^2 }-> s71 :|: s67 >= 0, s67 <= z - 1, s68 >= 0, s68 <= x_122, s69 >= 0, s69 <= x_26, s70 >= 0, s70 <= s69, s71 >= 0, s71 <= s70, x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 1 + s73 + s75 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 + -1*z' + 6*z'^2 }-> s76 :|: s72 >= 0, s72 <= x_116, s73 >= 0, s73 <= x_24, s74 >= 0, s74 <= s73, s75 >= 0, s75 <= z' - 1, s76 >= 0, s76 <= 1 + s75, z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 7 + s78 + s81 + s82 + 11*x_116 + 6*x_116^2 + 11*x_125 + 6*x_125^2 + 11*x_24 + 6*x_24^2 + 11*x_27 + 6*x_27^2 }-> s83 :|: s77 >= 0, s77 <= x_116, s78 >= 0, s78 <= x_24, s79 >= 0, s79 <= s78, s80 >= 0, s80 <= x_125, s81 >= 0, s81 <= x_27, s82 >= 0, s82 <= s81, s83 >= 0, s83 <= s82, z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 4 + s85 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 }-> s87 :|: s84 >= 0, s84 <= x_116, s85 >= 0, s85 <= x_24, s86 >= 0, s86 <= s85, s87 >= 0, s87 <= 0, z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ -2 + s88 + -1*z' + 6*z'^2 }-> s89 :|: s88 >= 0, s88 <= z' - 1, s89 >= 0, s89 <= 1 + s88, z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s91 + s92 + 11*x_128 + 6*x_128^2 + 11*x_28 + 6*x_28^2 }-> s93 :|: s90 >= 0, s90 <= x_128, s91 >= 0, s91 <= x_28, s92 >= 0, s92 <= s91, s93 >= 0, s93 <= s92, z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s94 :|: s94 >= 0, s94 <= z, z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s95 :|: s95 >= 0, s95 <= z, z >= 0 f(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z' - 1, z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: {encode_h}, {encode_f}, {encode_g} Previous analysis results are: f: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encArg: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [z] encode_h: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_h after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 11*z + 6*z^2 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + s10 + s11 + 11*x_1' + 6*x_1'^2 + 11*x_14 + 6*x_14^2 + 11*x_2'' + 6*x_2''^2 }-> s12 :|: s8 >= 0, s8 <= x_1', s9 >= 0, s9 <= x_14, s10 >= 0, s10 <= x_2'', s11 >= 0, s11 <= s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 2 + 11*x_1' + 6*x_1'^2 }-> s14 :|: s13 >= 0, s13 <= x_1', s14 >= 0, s14 <= 0, x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 4 + s16 + 11*x_1'' + 6*x_1''^2 + 11*x_15 + 6*x_15^2 }-> s17 :|: s15 >= 0, s15 <= x_1'', s16 >= 0, s16 <= x_15, s17 >= 0, s17 <= 1 + s16, x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 4 + s19 + 11*x_1'' + 6*x_1''^2 + 11*x_16 + 6*x_16^2 }-> s20 :|: s18 >= 0, s18 <= x_1'', s19 >= 0, s19 <= x_16, s20 >= 0, s20 <= 1 + s19, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 5 + s23 + s24 + 11*x_1'' + 6*x_1''^2 + 11*x_17 + 6*x_17^2 + 11*x_21 + 6*x_21^2 }-> s25 :|: s21 >= 0, s21 <= x_1'', s22 >= 0, s22 <= x_17, s23 >= 0, s23 <= x_21, s24 >= 0, s24 <= s23, s25 >= 0, s25 <= s24, x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 2 + 11*x_1'' + 6*x_1''^2 }-> s27 :|: s26 >= 0, s26 <= x_1'', s27 >= 0, s27 <= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 6 + s29 + s31 + 11*x_11 + 6*x_11^2 + 11*x_18 + 6*x_18^2 + 11*x_2' + 6*x_2'^2 }-> s32 :|: s28 >= 0, s28 <= x_11, s29 >= 0, s29 <= x_2', s30 >= 0, s30 <= s29, s31 >= 0, s31 <= x_18, s32 >= 0, s32 <= 1 + s31, x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 6 + s34 + s36 + 11*x_11 + 6*x_11^2 + 11*x_19 + 6*x_19^2 + 11*x_2' + 6*x_2'^2 }-> s37 :|: s33 >= 0, s33 <= x_11, s34 >= 0, s34 <= x_2', s35 >= 0, s35 <= s34, s36 >= 0, s36 <= x_19, s37 >= 0, s37 <= 1 + s36, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 4 + s3 + 11*x_1' + 6*x_1'^2 + 11*x_12 + 6*x_12^2 }-> s4 :|: s2 >= 0, s2 <= x_1', s3 >= 0, s3 <= x_12, s4 >= 0, s4 <= 1 + s3, z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 7 + s39 + s42 + s43 + 11*x_11 + 6*x_11^2 + 11*x_110 + 6*x_110^2 + 11*x_2' + 6*x_2'^2 + 11*x_22 + 6*x_22^2 }-> s44 :|: s38 >= 0, s38 <= x_11, s39 >= 0, s39 <= x_2', s40 >= 0, s40 <= s39, s41 >= 0, s41 <= x_110, s42 >= 0, s42 <= x_22, s43 >= 0, s43 <= s42, s44 >= 0, s44 <= s43, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 4 + s46 + 11*x_11 + 6*x_11^2 + 11*x_2' + 6*x_2'^2 }-> s48 :|: s45 >= 0, s45 <= x_11, s46 >= 0, s46 <= x_2', s47 >= 0, s47 <= s46, s48 >= 0, s48 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 3 + s49 + 11*x_111 + 6*x_111^2 }-> s50 :|: s49 >= 0, s49 <= x_111, s50 >= 0, s50 <= 1 + s49, x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 3 + s51 + 11*x_112 + 6*x_112^2 }-> s52 :|: s51 >= 0, s51 <= x_112, s52 >= 0, s52 <= 1 + s51, x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 4 + s54 + s55 + 11*x_113 + 6*x_113^2 + 11*x_23 + 6*x_23^2 }-> s56 :|: s53 >= 0, s53 <= x_113, s54 >= 0, s54 <= x_23, s55 >= 0, s55 <= s54, s56 >= 0, s56 <= s55, x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 4 + s6 + 11*x_1' + 6*x_1'^2 + 11*x_13 + 6*x_13^2 }-> s7 :|: s5 >= 0, s5 <= x_1', s6 >= 0, s6 <= x_13, s7 >= 0, s7 <= 1 + s6, z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -4 + -1*z + 6*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1, z - 1 >= 0 encode_f(z, z') -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ -6 + s58 + -1*z + 6*z^2 + -1*z' + 6*z'^2 }-> s59 :|: s57 >= 0, s57 <= z - 1, s58 >= 0, s58 <= z' - 1, s59 >= 0, s59 <= 1 + s58, z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ s62 + s63 + 11*x_119 + 6*x_119^2 + 11*x_25 + 6*x_25^2 + -1*z + 6*z^2 }-> s64 :|: s60 >= 0, s60 <= z - 1, s61 >= 0, s61 <= x_119, s62 >= 0, s62 <= x_25, s63 >= 0, s63 <= s62, s64 >= 0, s64 <= s63, z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ -3 + -1*z + 6*z^2 }-> s66 :|: s65 >= 0, s65 <= z - 1, s66 >= 0, s66 <= 0, z - 1 >= 0, z' >= 0 encode_f(z, z') -{ s69 + s70 + 11*x_122 + 6*x_122^2 + 11*x_26 + 6*x_26^2 + -1*z + 6*z^2 }-> s71 :|: s67 >= 0, s67 <= z - 1, s68 >= 0, s68 <= x_122, s69 >= 0, s69 <= x_26, s70 >= 0, s70 <= s69, s71 >= 0, s71 <= s70, x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 1 + s73 + s75 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 + -1*z' + 6*z'^2 }-> s76 :|: s72 >= 0, s72 <= x_116, s73 >= 0, s73 <= x_24, s74 >= 0, s74 <= s73, s75 >= 0, s75 <= z' - 1, s76 >= 0, s76 <= 1 + s75, z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 7 + s78 + s81 + s82 + 11*x_116 + 6*x_116^2 + 11*x_125 + 6*x_125^2 + 11*x_24 + 6*x_24^2 + 11*x_27 + 6*x_27^2 }-> s83 :|: s77 >= 0, s77 <= x_116, s78 >= 0, s78 <= x_24, s79 >= 0, s79 <= s78, s80 >= 0, s80 <= x_125, s81 >= 0, s81 <= x_27, s82 >= 0, s82 <= s81, s83 >= 0, s83 <= s82, z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 4 + s85 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 }-> s87 :|: s84 >= 0, s84 <= x_116, s85 >= 0, s85 <= x_24, s86 >= 0, s86 <= s85, s87 >= 0, s87 <= 0, z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ -2 + s88 + -1*z' + 6*z'^2 }-> s89 :|: s88 >= 0, s88 <= z' - 1, s89 >= 0, s89 <= 1 + s88, z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s91 + s92 + 11*x_128 + 6*x_128^2 + 11*x_28 + 6*x_28^2 }-> s93 :|: s90 >= 0, s90 <= x_128, s91 >= 0, s91 <= x_28, s92 >= 0, s92 <= s91, s93 >= 0, s93 <= s92, z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s94 :|: s94 >= 0, s94 <= z, z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s95 :|: s95 >= 0, s95 <= z, z >= 0 f(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z' - 1, z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: f: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encArg: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [z] encode_h: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [1 + z] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + s10 + s11 + 11*x_1' + 6*x_1'^2 + 11*x_14 + 6*x_14^2 + 11*x_2'' + 6*x_2''^2 }-> s12 :|: s8 >= 0, s8 <= x_1', s9 >= 0, s9 <= x_14, s10 >= 0, s10 <= x_2'', s11 >= 0, s11 <= s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 2 + 11*x_1' + 6*x_1'^2 }-> s14 :|: s13 >= 0, s13 <= x_1', s14 >= 0, s14 <= 0, x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 4 + s16 + 11*x_1'' + 6*x_1''^2 + 11*x_15 + 6*x_15^2 }-> s17 :|: s15 >= 0, s15 <= x_1'', s16 >= 0, s16 <= x_15, s17 >= 0, s17 <= 1 + s16, x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 4 + s19 + 11*x_1'' + 6*x_1''^2 + 11*x_16 + 6*x_16^2 }-> s20 :|: s18 >= 0, s18 <= x_1'', s19 >= 0, s19 <= x_16, s20 >= 0, s20 <= 1 + s19, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 5 + s23 + s24 + 11*x_1'' + 6*x_1''^2 + 11*x_17 + 6*x_17^2 + 11*x_21 + 6*x_21^2 }-> s25 :|: s21 >= 0, s21 <= x_1'', s22 >= 0, s22 <= x_17, s23 >= 0, s23 <= x_21, s24 >= 0, s24 <= s23, s25 >= 0, s25 <= s24, x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 2 + 11*x_1'' + 6*x_1''^2 }-> s27 :|: s26 >= 0, s26 <= x_1'', s27 >= 0, s27 <= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 6 + s29 + s31 + 11*x_11 + 6*x_11^2 + 11*x_18 + 6*x_18^2 + 11*x_2' + 6*x_2'^2 }-> s32 :|: s28 >= 0, s28 <= x_11, s29 >= 0, s29 <= x_2', s30 >= 0, s30 <= s29, s31 >= 0, s31 <= x_18, s32 >= 0, s32 <= 1 + s31, x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 6 + s34 + s36 + 11*x_11 + 6*x_11^2 + 11*x_19 + 6*x_19^2 + 11*x_2' + 6*x_2'^2 }-> s37 :|: s33 >= 0, s33 <= x_11, s34 >= 0, s34 <= x_2', s35 >= 0, s35 <= s34, s36 >= 0, s36 <= x_19, s37 >= 0, s37 <= 1 + s36, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 4 + s3 + 11*x_1' + 6*x_1'^2 + 11*x_12 + 6*x_12^2 }-> s4 :|: s2 >= 0, s2 <= x_1', s3 >= 0, s3 <= x_12, s4 >= 0, s4 <= 1 + s3, z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 7 + s39 + s42 + s43 + 11*x_11 + 6*x_11^2 + 11*x_110 + 6*x_110^2 + 11*x_2' + 6*x_2'^2 + 11*x_22 + 6*x_22^2 }-> s44 :|: s38 >= 0, s38 <= x_11, s39 >= 0, s39 <= x_2', s40 >= 0, s40 <= s39, s41 >= 0, s41 <= x_110, s42 >= 0, s42 <= x_22, s43 >= 0, s43 <= s42, s44 >= 0, s44 <= s43, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 4 + s46 + 11*x_11 + 6*x_11^2 + 11*x_2' + 6*x_2'^2 }-> s48 :|: s45 >= 0, s45 <= x_11, s46 >= 0, s46 <= x_2', s47 >= 0, s47 <= s46, s48 >= 0, s48 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 3 + s49 + 11*x_111 + 6*x_111^2 }-> s50 :|: s49 >= 0, s49 <= x_111, s50 >= 0, s50 <= 1 + s49, x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 3 + s51 + 11*x_112 + 6*x_112^2 }-> s52 :|: s51 >= 0, s51 <= x_112, s52 >= 0, s52 <= 1 + s51, x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 4 + s54 + s55 + 11*x_113 + 6*x_113^2 + 11*x_23 + 6*x_23^2 }-> s56 :|: s53 >= 0, s53 <= x_113, s54 >= 0, s54 <= x_23, s55 >= 0, s55 <= s54, s56 >= 0, s56 <= s55, x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 4 + s6 + 11*x_1' + 6*x_1'^2 + 11*x_13 + 6*x_13^2 }-> s7 :|: s5 >= 0, s5 <= x_1', s6 >= 0, s6 <= x_13, s7 >= 0, s7 <= 1 + s6, z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -4 + -1*z + 6*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1, z - 1 >= 0 encode_f(z, z') -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ -6 + s58 + -1*z + 6*z^2 + -1*z' + 6*z'^2 }-> s59 :|: s57 >= 0, s57 <= z - 1, s58 >= 0, s58 <= z' - 1, s59 >= 0, s59 <= 1 + s58, z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ s62 + s63 + 11*x_119 + 6*x_119^2 + 11*x_25 + 6*x_25^2 + -1*z + 6*z^2 }-> s64 :|: s60 >= 0, s60 <= z - 1, s61 >= 0, s61 <= x_119, s62 >= 0, s62 <= x_25, s63 >= 0, s63 <= s62, s64 >= 0, s64 <= s63, z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ -3 + -1*z + 6*z^2 }-> s66 :|: s65 >= 0, s65 <= z - 1, s66 >= 0, s66 <= 0, z - 1 >= 0, z' >= 0 encode_f(z, z') -{ s69 + s70 + 11*x_122 + 6*x_122^2 + 11*x_26 + 6*x_26^2 + -1*z + 6*z^2 }-> s71 :|: s67 >= 0, s67 <= z - 1, s68 >= 0, s68 <= x_122, s69 >= 0, s69 <= x_26, s70 >= 0, s70 <= s69, s71 >= 0, s71 <= s70, x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 1 + s73 + s75 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 + -1*z' + 6*z'^2 }-> s76 :|: s72 >= 0, s72 <= x_116, s73 >= 0, s73 <= x_24, s74 >= 0, s74 <= s73, s75 >= 0, s75 <= z' - 1, s76 >= 0, s76 <= 1 + s75, z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 7 + s78 + s81 + s82 + 11*x_116 + 6*x_116^2 + 11*x_125 + 6*x_125^2 + 11*x_24 + 6*x_24^2 + 11*x_27 + 6*x_27^2 }-> s83 :|: s77 >= 0, s77 <= x_116, s78 >= 0, s78 <= x_24, s79 >= 0, s79 <= s78, s80 >= 0, s80 <= x_125, s81 >= 0, s81 <= x_27, s82 >= 0, s82 <= s81, s83 >= 0, s83 <= s82, z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 4 + s85 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 }-> s87 :|: s84 >= 0, s84 <= x_116, s85 >= 0, s85 <= x_24, s86 >= 0, s86 <= s85, s87 >= 0, s87 <= 0, z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ -2 + s88 + -1*z' + 6*z'^2 }-> s89 :|: s88 >= 0, s88 <= z' - 1, s89 >= 0, s89 <= 1 + s88, z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s91 + s92 + 11*x_128 + 6*x_128^2 + 11*x_28 + 6*x_28^2 }-> s93 :|: s90 >= 0, s90 <= x_128, s91 >= 0, s91 <= x_28, s92 >= 0, s92 <= s91, s93 >= 0, s93 <= s92, z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s94 :|: s94 >= 0, s94 <= z, z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s95 :|: s95 >= 0, s95 <= z, z >= 0 f(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z' - 1, z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: f: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encArg: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [z] encode_h: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [1 + z] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + s10 + s11 + 11*x_1' + 6*x_1'^2 + 11*x_14 + 6*x_14^2 + 11*x_2'' + 6*x_2''^2 }-> s12 :|: s8 >= 0, s8 <= x_1', s9 >= 0, s9 <= x_14, s10 >= 0, s10 <= x_2'', s11 >= 0, s11 <= s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 2 + 11*x_1' + 6*x_1'^2 }-> s14 :|: s13 >= 0, s13 <= x_1', s14 >= 0, s14 <= 0, x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 4 + s16 + 11*x_1'' + 6*x_1''^2 + 11*x_15 + 6*x_15^2 }-> s17 :|: s15 >= 0, s15 <= x_1'', s16 >= 0, s16 <= x_15, s17 >= 0, s17 <= 1 + s16, x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 4 + s19 + 11*x_1'' + 6*x_1''^2 + 11*x_16 + 6*x_16^2 }-> s20 :|: s18 >= 0, s18 <= x_1'', s19 >= 0, s19 <= x_16, s20 >= 0, s20 <= 1 + s19, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 5 + s23 + s24 + 11*x_1'' + 6*x_1''^2 + 11*x_17 + 6*x_17^2 + 11*x_21 + 6*x_21^2 }-> s25 :|: s21 >= 0, s21 <= x_1'', s22 >= 0, s22 <= x_17, s23 >= 0, s23 <= x_21, s24 >= 0, s24 <= s23, s25 >= 0, s25 <= s24, x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 2 + 11*x_1'' + 6*x_1''^2 }-> s27 :|: s26 >= 0, s26 <= x_1'', s27 >= 0, s27 <= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 6 + s29 + s31 + 11*x_11 + 6*x_11^2 + 11*x_18 + 6*x_18^2 + 11*x_2' + 6*x_2'^2 }-> s32 :|: s28 >= 0, s28 <= x_11, s29 >= 0, s29 <= x_2', s30 >= 0, s30 <= s29, s31 >= 0, s31 <= x_18, s32 >= 0, s32 <= 1 + s31, x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 6 + s34 + s36 + 11*x_11 + 6*x_11^2 + 11*x_19 + 6*x_19^2 + 11*x_2' + 6*x_2'^2 }-> s37 :|: s33 >= 0, s33 <= x_11, s34 >= 0, s34 <= x_2', s35 >= 0, s35 <= s34, s36 >= 0, s36 <= x_19, s37 >= 0, s37 <= 1 + s36, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 4 + s3 + 11*x_1' + 6*x_1'^2 + 11*x_12 + 6*x_12^2 }-> s4 :|: s2 >= 0, s2 <= x_1', s3 >= 0, s3 <= x_12, s4 >= 0, s4 <= 1 + s3, z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 7 + s39 + s42 + s43 + 11*x_11 + 6*x_11^2 + 11*x_110 + 6*x_110^2 + 11*x_2' + 6*x_2'^2 + 11*x_22 + 6*x_22^2 }-> s44 :|: s38 >= 0, s38 <= x_11, s39 >= 0, s39 <= x_2', s40 >= 0, s40 <= s39, s41 >= 0, s41 <= x_110, s42 >= 0, s42 <= x_22, s43 >= 0, s43 <= s42, s44 >= 0, s44 <= s43, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 4 + s46 + 11*x_11 + 6*x_11^2 + 11*x_2' + 6*x_2'^2 }-> s48 :|: s45 >= 0, s45 <= x_11, s46 >= 0, s46 <= x_2', s47 >= 0, s47 <= s46, s48 >= 0, s48 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 3 + s49 + 11*x_111 + 6*x_111^2 }-> s50 :|: s49 >= 0, s49 <= x_111, s50 >= 0, s50 <= 1 + s49, x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 3 + s51 + 11*x_112 + 6*x_112^2 }-> s52 :|: s51 >= 0, s51 <= x_112, s52 >= 0, s52 <= 1 + s51, x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 4 + s54 + s55 + 11*x_113 + 6*x_113^2 + 11*x_23 + 6*x_23^2 }-> s56 :|: s53 >= 0, s53 <= x_113, s54 >= 0, s54 <= x_23, s55 >= 0, s55 <= s54, s56 >= 0, s56 <= s55, x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 4 + s6 + 11*x_1' + 6*x_1'^2 + 11*x_13 + 6*x_13^2 }-> s7 :|: s5 >= 0, s5 <= x_1', s6 >= 0, s6 <= x_13, s7 >= 0, s7 <= 1 + s6, z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -4 + -1*z + 6*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1, z - 1 >= 0 encode_f(z, z') -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ -6 + s58 + -1*z + 6*z^2 + -1*z' + 6*z'^2 }-> s59 :|: s57 >= 0, s57 <= z - 1, s58 >= 0, s58 <= z' - 1, s59 >= 0, s59 <= 1 + s58, z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ s62 + s63 + 11*x_119 + 6*x_119^2 + 11*x_25 + 6*x_25^2 + -1*z + 6*z^2 }-> s64 :|: s60 >= 0, s60 <= z - 1, s61 >= 0, s61 <= x_119, s62 >= 0, s62 <= x_25, s63 >= 0, s63 <= s62, s64 >= 0, s64 <= s63, z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ -3 + -1*z + 6*z^2 }-> s66 :|: s65 >= 0, s65 <= z - 1, s66 >= 0, s66 <= 0, z - 1 >= 0, z' >= 0 encode_f(z, z') -{ s69 + s70 + 11*x_122 + 6*x_122^2 + 11*x_26 + 6*x_26^2 + -1*z + 6*z^2 }-> s71 :|: s67 >= 0, s67 <= z - 1, s68 >= 0, s68 <= x_122, s69 >= 0, s69 <= x_26, s70 >= 0, s70 <= s69, s71 >= 0, s71 <= s70, x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 1 + s73 + s75 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 + -1*z' + 6*z'^2 }-> s76 :|: s72 >= 0, s72 <= x_116, s73 >= 0, s73 <= x_24, s74 >= 0, s74 <= s73, s75 >= 0, s75 <= z' - 1, s76 >= 0, s76 <= 1 + s75, z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 7 + s78 + s81 + s82 + 11*x_116 + 6*x_116^2 + 11*x_125 + 6*x_125^2 + 11*x_24 + 6*x_24^2 + 11*x_27 + 6*x_27^2 }-> s83 :|: s77 >= 0, s77 <= x_116, s78 >= 0, s78 <= x_24, s79 >= 0, s79 <= s78, s80 >= 0, s80 <= x_125, s81 >= 0, s81 <= x_27, s82 >= 0, s82 <= s81, s83 >= 0, s83 <= s82, z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 4 + s85 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 }-> s87 :|: s84 >= 0, s84 <= x_116, s85 >= 0, s85 <= x_24, s86 >= 0, s86 <= s85, s87 >= 0, s87 <= 0, z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ -2 + s88 + -1*z' + 6*z'^2 }-> s89 :|: s88 >= 0, s88 <= z' - 1, s89 >= 0, s89 <= 1 + s88, z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s91 + s92 + 11*x_128 + 6*x_128^2 + 11*x_28 + 6*x_28^2 }-> s93 :|: s90 >= 0, s90 <= x_128, s91 >= 0, s91 <= x_28, s92 >= 0, s92 <= s91, s93 >= 0, s93 <= s92, z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s94 :|: s94 >= 0, s94 <= z, z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s95 :|: s95 >= 0, s95 <= z, z >= 0 f(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z' - 1, z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: f: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encArg: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [z] encode_h: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [1 + z] encode_f: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 17 + 69*z + 60*z^2 + 96*z' + 66*z'^2 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + s10 + s11 + 11*x_1' + 6*x_1'^2 + 11*x_14 + 6*x_14^2 + 11*x_2'' + 6*x_2''^2 }-> s12 :|: s8 >= 0, s8 <= x_1', s9 >= 0, s9 <= x_14, s10 >= 0, s10 <= x_2'', s11 >= 0, s11 <= s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 2 + 11*x_1' + 6*x_1'^2 }-> s14 :|: s13 >= 0, s13 <= x_1', s14 >= 0, s14 <= 0, x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 4 + s16 + 11*x_1'' + 6*x_1''^2 + 11*x_15 + 6*x_15^2 }-> s17 :|: s15 >= 0, s15 <= x_1'', s16 >= 0, s16 <= x_15, s17 >= 0, s17 <= 1 + s16, x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 4 + s19 + 11*x_1'' + 6*x_1''^2 + 11*x_16 + 6*x_16^2 }-> s20 :|: s18 >= 0, s18 <= x_1'', s19 >= 0, s19 <= x_16, s20 >= 0, s20 <= 1 + s19, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 5 + s23 + s24 + 11*x_1'' + 6*x_1''^2 + 11*x_17 + 6*x_17^2 + 11*x_21 + 6*x_21^2 }-> s25 :|: s21 >= 0, s21 <= x_1'', s22 >= 0, s22 <= x_17, s23 >= 0, s23 <= x_21, s24 >= 0, s24 <= s23, s25 >= 0, s25 <= s24, x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 2 + 11*x_1'' + 6*x_1''^2 }-> s27 :|: s26 >= 0, s26 <= x_1'', s27 >= 0, s27 <= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 6 + s29 + s31 + 11*x_11 + 6*x_11^2 + 11*x_18 + 6*x_18^2 + 11*x_2' + 6*x_2'^2 }-> s32 :|: s28 >= 0, s28 <= x_11, s29 >= 0, s29 <= x_2', s30 >= 0, s30 <= s29, s31 >= 0, s31 <= x_18, s32 >= 0, s32 <= 1 + s31, x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 6 + s34 + s36 + 11*x_11 + 6*x_11^2 + 11*x_19 + 6*x_19^2 + 11*x_2' + 6*x_2'^2 }-> s37 :|: s33 >= 0, s33 <= x_11, s34 >= 0, s34 <= x_2', s35 >= 0, s35 <= s34, s36 >= 0, s36 <= x_19, s37 >= 0, s37 <= 1 + s36, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 4 + s3 + 11*x_1' + 6*x_1'^2 + 11*x_12 + 6*x_12^2 }-> s4 :|: s2 >= 0, s2 <= x_1', s3 >= 0, s3 <= x_12, s4 >= 0, s4 <= 1 + s3, z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 7 + s39 + s42 + s43 + 11*x_11 + 6*x_11^2 + 11*x_110 + 6*x_110^2 + 11*x_2' + 6*x_2'^2 + 11*x_22 + 6*x_22^2 }-> s44 :|: s38 >= 0, s38 <= x_11, s39 >= 0, s39 <= x_2', s40 >= 0, s40 <= s39, s41 >= 0, s41 <= x_110, s42 >= 0, s42 <= x_22, s43 >= 0, s43 <= s42, s44 >= 0, s44 <= s43, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 4 + s46 + 11*x_11 + 6*x_11^2 + 11*x_2' + 6*x_2'^2 }-> s48 :|: s45 >= 0, s45 <= x_11, s46 >= 0, s46 <= x_2', s47 >= 0, s47 <= s46, s48 >= 0, s48 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 3 + s49 + 11*x_111 + 6*x_111^2 }-> s50 :|: s49 >= 0, s49 <= x_111, s50 >= 0, s50 <= 1 + s49, x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 3 + s51 + 11*x_112 + 6*x_112^2 }-> s52 :|: s51 >= 0, s51 <= x_112, s52 >= 0, s52 <= 1 + s51, x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 4 + s54 + s55 + 11*x_113 + 6*x_113^2 + 11*x_23 + 6*x_23^2 }-> s56 :|: s53 >= 0, s53 <= x_113, s54 >= 0, s54 <= x_23, s55 >= 0, s55 <= s54, s56 >= 0, s56 <= s55, x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 4 + s6 + 11*x_1' + 6*x_1'^2 + 11*x_13 + 6*x_13^2 }-> s7 :|: s5 >= 0, s5 <= x_1', s6 >= 0, s6 <= x_13, s7 >= 0, s7 <= 1 + s6, z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -4 + -1*z + 6*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1, z - 1 >= 0 encode_f(z, z') -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ -6 + s58 + -1*z + 6*z^2 + -1*z' + 6*z'^2 }-> s59 :|: s57 >= 0, s57 <= z - 1, s58 >= 0, s58 <= z' - 1, s59 >= 0, s59 <= 1 + s58, z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ s62 + s63 + 11*x_119 + 6*x_119^2 + 11*x_25 + 6*x_25^2 + -1*z + 6*z^2 }-> s64 :|: s60 >= 0, s60 <= z - 1, s61 >= 0, s61 <= x_119, s62 >= 0, s62 <= x_25, s63 >= 0, s63 <= s62, s64 >= 0, s64 <= s63, z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ -3 + -1*z + 6*z^2 }-> s66 :|: s65 >= 0, s65 <= z - 1, s66 >= 0, s66 <= 0, z - 1 >= 0, z' >= 0 encode_f(z, z') -{ s69 + s70 + 11*x_122 + 6*x_122^2 + 11*x_26 + 6*x_26^2 + -1*z + 6*z^2 }-> s71 :|: s67 >= 0, s67 <= z - 1, s68 >= 0, s68 <= x_122, s69 >= 0, s69 <= x_26, s70 >= 0, s70 <= s69, s71 >= 0, s71 <= s70, x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 1 + s73 + s75 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 + -1*z' + 6*z'^2 }-> s76 :|: s72 >= 0, s72 <= x_116, s73 >= 0, s73 <= x_24, s74 >= 0, s74 <= s73, s75 >= 0, s75 <= z' - 1, s76 >= 0, s76 <= 1 + s75, z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 7 + s78 + s81 + s82 + 11*x_116 + 6*x_116^2 + 11*x_125 + 6*x_125^2 + 11*x_24 + 6*x_24^2 + 11*x_27 + 6*x_27^2 }-> s83 :|: s77 >= 0, s77 <= x_116, s78 >= 0, s78 <= x_24, s79 >= 0, s79 <= s78, s80 >= 0, s80 <= x_125, s81 >= 0, s81 <= x_27, s82 >= 0, s82 <= s81, s83 >= 0, s83 <= s82, z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 4 + s85 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 }-> s87 :|: s84 >= 0, s84 <= x_116, s85 >= 0, s85 <= x_24, s86 >= 0, s86 <= s85, s87 >= 0, s87 <= 0, z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ -2 + s88 + -1*z' + 6*z'^2 }-> s89 :|: s88 >= 0, s88 <= z' - 1, s89 >= 0, s89 <= 1 + s88, z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s91 + s92 + 11*x_128 + 6*x_128^2 + 11*x_28 + 6*x_28^2 }-> s93 :|: s90 >= 0, s90 <= x_128, s91 >= 0, s91 <= x_28, s92 >= 0, s92 <= s91, s93 >= 0, s93 <= s92, z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s94 :|: s94 >= 0, s94 <= z, z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s95 :|: s95 >= 0, s95 <= z, z >= 0 f(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z' - 1, z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: {encode_g} Previous analysis results are: f: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encArg: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [z] encode_h: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [1 + z] encode_f: runtime: O(n^2) [17 + 69*z + 60*z^2 + 96*z' + 66*z'^2], size: O(n^1) [z'] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + s10 + s11 + 11*x_1' + 6*x_1'^2 + 11*x_14 + 6*x_14^2 + 11*x_2'' + 6*x_2''^2 }-> s12 :|: s8 >= 0, s8 <= x_1', s9 >= 0, s9 <= x_14, s10 >= 0, s10 <= x_2'', s11 >= 0, s11 <= s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 2 + 11*x_1' + 6*x_1'^2 }-> s14 :|: s13 >= 0, s13 <= x_1', s14 >= 0, s14 <= 0, x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 4 + s16 + 11*x_1'' + 6*x_1''^2 + 11*x_15 + 6*x_15^2 }-> s17 :|: s15 >= 0, s15 <= x_1'', s16 >= 0, s16 <= x_15, s17 >= 0, s17 <= 1 + s16, x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 4 + s19 + 11*x_1'' + 6*x_1''^2 + 11*x_16 + 6*x_16^2 }-> s20 :|: s18 >= 0, s18 <= x_1'', s19 >= 0, s19 <= x_16, s20 >= 0, s20 <= 1 + s19, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 5 + s23 + s24 + 11*x_1'' + 6*x_1''^2 + 11*x_17 + 6*x_17^2 + 11*x_21 + 6*x_21^2 }-> s25 :|: s21 >= 0, s21 <= x_1'', s22 >= 0, s22 <= x_17, s23 >= 0, s23 <= x_21, s24 >= 0, s24 <= s23, s25 >= 0, s25 <= s24, x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 2 + 11*x_1'' + 6*x_1''^2 }-> s27 :|: s26 >= 0, s26 <= x_1'', s27 >= 0, s27 <= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 6 + s29 + s31 + 11*x_11 + 6*x_11^2 + 11*x_18 + 6*x_18^2 + 11*x_2' + 6*x_2'^2 }-> s32 :|: s28 >= 0, s28 <= x_11, s29 >= 0, s29 <= x_2', s30 >= 0, s30 <= s29, s31 >= 0, s31 <= x_18, s32 >= 0, s32 <= 1 + s31, x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 6 + s34 + s36 + 11*x_11 + 6*x_11^2 + 11*x_19 + 6*x_19^2 + 11*x_2' + 6*x_2'^2 }-> s37 :|: s33 >= 0, s33 <= x_11, s34 >= 0, s34 <= x_2', s35 >= 0, s35 <= s34, s36 >= 0, s36 <= x_19, s37 >= 0, s37 <= 1 + s36, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 4 + s3 + 11*x_1' + 6*x_1'^2 + 11*x_12 + 6*x_12^2 }-> s4 :|: s2 >= 0, s2 <= x_1', s3 >= 0, s3 <= x_12, s4 >= 0, s4 <= 1 + s3, z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 7 + s39 + s42 + s43 + 11*x_11 + 6*x_11^2 + 11*x_110 + 6*x_110^2 + 11*x_2' + 6*x_2'^2 + 11*x_22 + 6*x_22^2 }-> s44 :|: s38 >= 0, s38 <= x_11, s39 >= 0, s39 <= x_2', s40 >= 0, s40 <= s39, s41 >= 0, s41 <= x_110, s42 >= 0, s42 <= x_22, s43 >= 0, s43 <= s42, s44 >= 0, s44 <= s43, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 4 + s46 + 11*x_11 + 6*x_11^2 + 11*x_2' + 6*x_2'^2 }-> s48 :|: s45 >= 0, s45 <= x_11, s46 >= 0, s46 <= x_2', s47 >= 0, s47 <= s46, s48 >= 0, s48 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 3 + s49 + 11*x_111 + 6*x_111^2 }-> s50 :|: s49 >= 0, s49 <= x_111, s50 >= 0, s50 <= 1 + s49, x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 3 + s51 + 11*x_112 + 6*x_112^2 }-> s52 :|: s51 >= 0, s51 <= x_112, s52 >= 0, s52 <= 1 + s51, x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 4 + s54 + s55 + 11*x_113 + 6*x_113^2 + 11*x_23 + 6*x_23^2 }-> s56 :|: s53 >= 0, s53 <= x_113, s54 >= 0, s54 <= x_23, s55 >= 0, s55 <= s54, s56 >= 0, s56 <= s55, x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 4 + s6 + 11*x_1' + 6*x_1'^2 + 11*x_13 + 6*x_13^2 }-> s7 :|: s5 >= 0, s5 <= x_1', s6 >= 0, s6 <= x_13, s7 >= 0, s7 <= 1 + s6, z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -4 + -1*z + 6*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1, z - 1 >= 0 encode_f(z, z') -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ -6 + s58 + -1*z + 6*z^2 + -1*z' + 6*z'^2 }-> s59 :|: s57 >= 0, s57 <= z - 1, s58 >= 0, s58 <= z' - 1, s59 >= 0, s59 <= 1 + s58, z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ s62 + s63 + 11*x_119 + 6*x_119^2 + 11*x_25 + 6*x_25^2 + -1*z + 6*z^2 }-> s64 :|: s60 >= 0, s60 <= z - 1, s61 >= 0, s61 <= x_119, s62 >= 0, s62 <= x_25, s63 >= 0, s63 <= s62, s64 >= 0, s64 <= s63, z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ -3 + -1*z + 6*z^2 }-> s66 :|: s65 >= 0, s65 <= z - 1, s66 >= 0, s66 <= 0, z - 1 >= 0, z' >= 0 encode_f(z, z') -{ s69 + s70 + 11*x_122 + 6*x_122^2 + 11*x_26 + 6*x_26^2 + -1*z + 6*z^2 }-> s71 :|: s67 >= 0, s67 <= z - 1, s68 >= 0, s68 <= x_122, s69 >= 0, s69 <= x_26, s70 >= 0, s70 <= s69, s71 >= 0, s71 <= s70, x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 1 + s73 + s75 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 + -1*z' + 6*z'^2 }-> s76 :|: s72 >= 0, s72 <= x_116, s73 >= 0, s73 <= x_24, s74 >= 0, s74 <= s73, s75 >= 0, s75 <= z' - 1, s76 >= 0, s76 <= 1 + s75, z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 7 + s78 + s81 + s82 + 11*x_116 + 6*x_116^2 + 11*x_125 + 6*x_125^2 + 11*x_24 + 6*x_24^2 + 11*x_27 + 6*x_27^2 }-> s83 :|: s77 >= 0, s77 <= x_116, s78 >= 0, s78 <= x_24, s79 >= 0, s79 <= s78, s80 >= 0, s80 <= x_125, s81 >= 0, s81 <= x_27, s82 >= 0, s82 <= s81, s83 >= 0, s83 <= s82, z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 4 + s85 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 }-> s87 :|: s84 >= 0, s84 <= x_116, s85 >= 0, s85 <= x_24, s86 >= 0, s86 <= s85, s87 >= 0, s87 <= 0, z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ -2 + s88 + -1*z' + 6*z'^2 }-> s89 :|: s88 >= 0, s88 <= z' - 1, s89 >= 0, s89 <= 1 + s88, z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s91 + s92 + 11*x_128 + 6*x_128^2 + 11*x_28 + 6*x_28^2 }-> s93 :|: s90 >= 0, s90 <= x_128, s91 >= 0, s91 <= x_28, s92 >= 0, s92 <= s91, s93 >= 0, s93 <= s92, z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s94 :|: s94 >= 0, s94 <= z, z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s95 :|: s95 >= 0, s95 <= z, z >= 0 f(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z' - 1, z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: {encode_g} Previous analysis results are: f: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encArg: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [z] encode_h: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [1 + z] encode_f: runtime: O(n^2) [17 + 69*z + 60*z^2 + 96*z' + 66*z'^2], size: O(n^1) [z'] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + s10 + s11 + 11*x_1' + 6*x_1'^2 + 11*x_14 + 6*x_14^2 + 11*x_2'' + 6*x_2''^2 }-> s12 :|: s8 >= 0, s8 <= x_1', s9 >= 0, s9 <= x_14, s10 >= 0, s10 <= x_2'', s11 >= 0, s11 <= s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 2 + 11*x_1' + 6*x_1'^2 }-> s14 :|: s13 >= 0, s13 <= x_1', s14 >= 0, s14 <= 0, x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 4 + s16 + 11*x_1'' + 6*x_1''^2 + 11*x_15 + 6*x_15^2 }-> s17 :|: s15 >= 0, s15 <= x_1'', s16 >= 0, s16 <= x_15, s17 >= 0, s17 <= 1 + s16, x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 4 + s19 + 11*x_1'' + 6*x_1''^2 + 11*x_16 + 6*x_16^2 }-> s20 :|: s18 >= 0, s18 <= x_1'', s19 >= 0, s19 <= x_16, s20 >= 0, s20 <= 1 + s19, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 5 + s23 + s24 + 11*x_1'' + 6*x_1''^2 + 11*x_17 + 6*x_17^2 + 11*x_21 + 6*x_21^2 }-> s25 :|: s21 >= 0, s21 <= x_1'', s22 >= 0, s22 <= x_17, s23 >= 0, s23 <= x_21, s24 >= 0, s24 <= s23, s25 >= 0, s25 <= s24, x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 2 + 11*x_1'' + 6*x_1''^2 }-> s27 :|: s26 >= 0, s26 <= x_1'', s27 >= 0, s27 <= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 6 + s29 + s31 + 11*x_11 + 6*x_11^2 + 11*x_18 + 6*x_18^2 + 11*x_2' + 6*x_2'^2 }-> s32 :|: s28 >= 0, s28 <= x_11, s29 >= 0, s29 <= x_2', s30 >= 0, s30 <= s29, s31 >= 0, s31 <= x_18, s32 >= 0, s32 <= 1 + s31, x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 6 + s34 + s36 + 11*x_11 + 6*x_11^2 + 11*x_19 + 6*x_19^2 + 11*x_2' + 6*x_2'^2 }-> s37 :|: s33 >= 0, s33 <= x_11, s34 >= 0, s34 <= x_2', s35 >= 0, s35 <= s34, s36 >= 0, s36 <= x_19, s37 >= 0, s37 <= 1 + s36, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 4 + s3 + 11*x_1' + 6*x_1'^2 + 11*x_12 + 6*x_12^2 }-> s4 :|: s2 >= 0, s2 <= x_1', s3 >= 0, s3 <= x_12, s4 >= 0, s4 <= 1 + s3, z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 7 + s39 + s42 + s43 + 11*x_11 + 6*x_11^2 + 11*x_110 + 6*x_110^2 + 11*x_2' + 6*x_2'^2 + 11*x_22 + 6*x_22^2 }-> s44 :|: s38 >= 0, s38 <= x_11, s39 >= 0, s39 <= x_2', s40 >= 0, s40 <= s39, s41 >= 0, s41 <= x_110, s42 >= 0, s42 <= x_22, s43 >= 0, s43 <= s42, s44 >= 0, s44 <= s43, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 4 + s46 + 11*x_11 + 6*x_11^2 + 11*x_2' + 6*x_2'^2 }-> s48 :|: s45 >= 0, s45 <= x_11, s46 >= 0, s46 <= x_2', s47 >= 0, s47 <= s46, s48 >= 0, s48 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 3 + s49 + 11*x_111 + 6*x_111^2 }-> s50 :|: s49 >= 0, s49 <= x_111, s50 >= 0, s50 <= 1 + s49, x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 3 + s51 + 11*x_112 + 6*x_112^2 }-> s52 :|: s51 >= 0, s51 <= x_112, s52 >= 0, s52 <= 1 + s51, x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 4 + s54 + s55 + 11*x_113 + 6*x_113^2 + 11*x_23 + 6*x_23^2 }-> s56 :|: s53 >= 0, s53 <= x_113, s54 >= 0, s54 <= x_23, s55 >= 0, s55 <= s54, s56 >= 0, s56 <= s55, x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 4 + s6 + 11*x_1' + 6*x_1'^2 + 11*x_13 + 6*x_13^2 }-> s7 :|: s5 >= 0, s5 <= x_1', s6 >= 0, s6 <= x_13, s7 >= 0, s7 <= 1 + s6, z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -4 + -1*z + 6*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1, z - 1 >= 0 encode_f(z, z') -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ -6 + s58 + -1*z + 6*z^2 + -1*z' + 6*z'^2 }-> s59 :|: s57 >= 0, s57 <= z - 1, s58 >= 0, s58 <= z' - 1, s59 >= 0, s59 <= 1 + s58, z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ s62 + s63 + 11*x_119 + 6*x_119^2 + 11*x_25 + 6*x_25^2 + -1*z + 6*z^2 }-> s64 :|: s60 >= 0, s60 <= z - 1, s61 >= 0, s61 <= x_119, s62 >= 0, s62 <= x_25, s63 >= 0, s63 <= s62, s64 >= 0, s64 <= s63, z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ -3 + -1*z + 6*z^2 }-> s66 :|: s65 >= 0, s65 <= z - 1, s66 >= 0, s66 <= 0, z - 1 >= 0, z' >= 0 encode_f(z, z') -{ s69 + s70 + 11*x_122 + 6*x_122^2 + 11*x_26 + 6*x_26^2 + -1*z + 6*z^2 }-> s71 :|: s67 >= 0, s67 <= z - 1, s68 >= 0, s68 <= x_122, s69 >= 0, s69 <= x_26, s70 >= 0, s70 <= s69, s71 >= 0, s71 <= s70, x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 1 + s73 + s75 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 + -1*z' + 6*z'^2 }-> s76 :|: s72 >= 0, s72 <= x_116, s73 >= 0, s73 <= x_24, s74 >= 0, s74 <= s73, s75 >= 0, s75 <= z' - 1, s76 >= 0, s76 <= 1 + s75, z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 7 + s78 + s81 + s82 + 11*x_116 + 6*x_116^2 + 11*x_125 + 6*x_125^2 + 11*x_24 + 6*x_24^2 + 11*x_27 + 6*x_27^2 }-> s83 :|: s77 >= 0, s77 <= x_116, s78 >= 0, s78 <= x_24, s79 >= 0, s79 <= s78, s80 >= 0, s80 <= x_125, s81 >= 0, s81 <= x_27, s82 >= 0, s82 <= s81, s83 >= 0, s83 <= s82, z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 4 + s85 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 }-> s87 :|: s84 >= 0, s84 <= x_116, s85 >= 0, s85 <= x_24, s86 >= 0, s86 <= s85, s87 >= 0, s87 <= 0, z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ -2 + s88 + -1*z' + 6*z'^2 }-> s89 :|: s88 >= 0, s88 <= z' - 1, s89 >= 0, s89 <= 1 + s88, z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s91 + s92 + 11*x_128 + 6*x_128^2 + 11*x_28 + 6*x_28^2 }-> s93 :|: s90 >= 0, s90 <= x_128, s91 >= 0, s91 <= x_28, s92 >= 0, s92 <= s91, s93 >= 0, s93 <= s92, z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s94 :|: s94 >= 0, s94 <= z, z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s95 :|: s95 >= 0, s95 <= z, z >= 0 f(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z' - 1, z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: {encode_g} Previous analysis results are: f: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encArg: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [z] encode_h: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [1 + z] encode_f: runtime: O(n^2) [17 + 69*z + 60*z^2 + 96*z' + 66*z'^2], size: O(n^1) [z'] encode_g: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 11*z + 6*z^2 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + s10 + s11 + 11*x_1' + 6*x_1'^2 + 11*x_14 + 6*x_14^2 + 11*x_2'' + 6*x_2''^2 }-> s12 :|: s8 >= 0, s8 <= x_1', s9 >= 0, s9 <= x_14, s10 >= 0, s10 <= x_2'', s11 >= 0, s11 <= s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_1') + (1 + x_14 + x_2''), x_14 >= 0, x_1' >= 0, x_2'' >= 0 encArg(z) -{ 2 + 11*x_1' + 6*x_1'^2 }-> s14 :|: s13 >= 0, s13 <= x_1', s14 >= 0, s14 <= 0, x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 4 + s16 + 11*x_1'' + 6*x_1''^2 + 11*x_15 + 6*x_15^2 }-> s17 :|: s15 >= 0, s15 <= x_1'', s16 >= 0, s16 <= x_15, s17 >= 0, s17 <= 1 + s16, x_15 >= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_15) encArg(z) -{ 4 + s19 + 11*x_1'' + 6*x_1''^2 + 11*x_16 + 6*x_16^2 }-> s20 :|: s18 >= 0, s18 <= x_1'', s19 >= 0, s19 <= x_16, s20 >= 0, s20 <= 1 + s19, x_1'' >= 0, z = 1 + (1 + x_1'') + (1 + x_16), x_16 >= 0 encArg(z) -{ 5 + s23 + s24 + 11*x_1'' + 6*x_1''^2 + 11*x_17 + 6*x_17^2 + 11*x_21 + 6*x_21^2 }-> s25 :|: s21 >= 0, s21 <= x_1'', s22 >= 0, s22 <= x_17, s23 >= 0, s23 <= x_21, s24 >= 0, s24 <= s23, s25 >= 0, s25 <= s24, x_1'' >= 0, x_17 >= 0, z = 1 + (1 + x_1'') + (1 + x_17 + x_21), x_21 >= 0 encArg(z) -{ 2 + 11*x_1'' + 6*x_1''^2 }-> s27 :|: s26 >= 0, s26 <= x_1'', s27 >= 0, s27 <= 0, x_1'' >= 0, z = 1 + (1 + x_1'') + x_2, x_2 >= 0 encArg(z) -{ 6 + s29 + s31 + 11*x_11 + 6*x_11^2 + 11*x_18 + 6*x_18^2 + 11*x_2' + 6*x_2'^2 }-> s32 :|: s28 >= 0, s28 <= x_11, s29 >= 0, s29 <= x_2', s30 >= 0, s30 <= s29, s31 >= 0, s31 <= x_18, s32 >= 0, s32 <= 1 + s31, x_11 >= 0, x_2' >= 0, x_18 >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_18) encArg(z) -{ 6 + s34 + s36 + 11*x_11 + 6*x_11^2 + 11*x_19 + 6*x_19^2 + 11*x_2' + 6*x_2'^2 }-> s37 :|: s33 >= 0, s33 <= x_11, s34 >= 0, s34 <= x_2', s35 >= 0, s35 <= s34, s36 >= 0, s36 <= x_19, s37 >= 0, s37 <= 1 + s36, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_19), x_19 >= 0 encArg(z) -{ 4 + s3 + 11*x_1' + 6*x_1'^2 + 11*x_12 + 6*x_12^2 }-> s4 :|: s2 >= 0, s2 <= x_1', s3 >= 0, s3 <= x_12, s4 >= 0, s4 <= 1 + s3, z = 1 + (1 + x_1') + (1 + x_12), x_1' >= 0, x_12 >= 0 encArg(z) -{ 7 + s39 + s42 + s43 + 11*x_11 + 6*x_11^2 + 11*x_110 + 6*x_110^2 + 11*x_2' + 6*x_2'^2 + 11*x_22 + 6*x_22^2 }-> s44 :|: s38 >= 0, s38 <= x_11, s39 >= 0, s39 <= x_2', s40 >= 0, s40 <= s39, s41 >= 0, s41 <= x_110, s42 >= 0, s42 <= x_22, s43 >= 0, s43 <= s42, s44 >= 0, s44 <= s43, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + (1 + x_110 + x_22), x_110 >= 0, x_22 >= 0 encArg(z) -{ 4 + s46 + 11*x_11 + 6*x_11^2 + 11*x_2' + 6*x_2'^2 }-> s48 :|: s45 >= 0, s45 <= x_11, s46 >= 0, s46 <= x_2', s47 >= 0, s47 <= s46, s48 >= 0, s48 <= 0, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') + x_2, x_2 >= 0 encArg(z) -{ 3 + s49 + 11*x_111 + 6*x_111^2 }-> s50 :|: s49 >= 0, s49 <= x_111, s50 >= 0, s50 <= 1 + s49, x_1 >= 0, z = 1 + x_1 + (1 + x_111), x_111 >= 0 encArg(z) -{ 3 + s51 + 11*x_112 + 6*x_112^2 }-> s52 :|: s51 >= 0, s51 <= x_112, s52 >= 0, s52 <= 1 + s51, x_1 >= 0, z = 1 + x_1 + (1 + x_112), x_112 >= 0 encArg(z) -{ 4 + s54 + s55 + 11*x_113 + 6*x_113^2 + 11*x_23 + 6*x_23^2 }-> s56 :|: s53 >= 0, s53 <= x_113, s54 >= 0, s54 <= x_23, s55 >= 0, s55 <= s54, s56 >= 0, s56 <= s55, x_1 >= 0, x_113 >= 0, x_23 >= 0, z = 1 + x_1 + (1 + x_113 + x_23) encArg(z) -{ 4 + s6 + 11*x_1' + 6*x_1'^2 + 11*x_13 + 6*x_13^2 }-> s7 :|: s5 >= 0, s5 <= x_1', s6 >= 0, s6 <= x_13, s7 >= 0, s7 <= 1 + s6, z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -4 + -1*z + 6*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1, z - 1 >= 0 encode_f(z, z') -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ -6 + s58 + -1*z + 6*z^2 + -1*z' + 6*z'^2 }-> s59 :|: s57 >= 0, s57 <= z - 1, s58 >= 0, s58 <= z' - 1, s59 >= 0, s59 <= 1 + s58, z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ s62 + s63 + 11*x_119 + 6*x_119^2 + 11*x_25 + 6*x_25^2 + -1*z + 6*z^2 }-> s64 :|: s60 >= 0, s60 <= z - 1, s61 >= 0, s61 <= x_119, s62 >= 0, s62 <= x_25, s63 >= 0, s63 <= s62, s64 >= 0, s64 <= s63, z' = 1 + x_119 + x_25, z - 1 >= 0, x_25 >= 0, x_119 >= 0 encode_f(z, z') -{ -3 + -1*z + 6*z^2 }-> s66 :|: s65 >= 0, s65 <= z - 1, s66 >= 0, s66 <= 0, z - 1 >= 0, z' >= 0 encode_f(z, z') -{ s69 + s70 + 11*x_122 + 6*x_122^2 + 11*x_26 + 6*x_26^2 + -1*z + 6*z^2 }-> s71 :|: s67 >= 0, s67 <= z - 1, s68 >= 0, s68 <= x_122, s69 >= 0, s69 <= x_26, s70 >= 0, s70 <= s69, s71 >= 0, s71 <= s70, x_26 >= 0, z - 1 >= 0, z' = 1 + x_122 + x_26, x_122 >= 0 encode_f(z, z') -{ 1 + s73 + s75 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 + -1*z' + 6*z'^2 }-> s76 :|: s72 >= 0, s72 <= x_116, s73 >= 0, s73 <= x_24, s74 >= 0, s74 <= s73, s75 >= 0, s75 <= z' - 1, s76 >= 0, s76 <= 1 + s75, z = 1 + x_116 + x_24, z' - 1 >= 0, x_116 >= 0, x_24 >= 0 encode_f(z, z') -{ 7 + s78 + s81 + s82 + 11*x_116 + 6*x_116^2 + 11*x_125 + 6*x_125^2 + 11*x_24 + 6*x_24^2 + 11*x_27 + 6*x_27^2 }-> s83 :|: s77 >= 0, s77 <= x_116, s78 >= 0, s78 <= x_24, s79 >= 0, s79 <= s78, s80 >= 0, s80 <= x_125, s81 >= 0, s81 <= x_27, s82 >= 0, s82 <= s81, s83 >= 0, s83 <= s82, z = 1 + x_116 + x_24, x_116 >= 0, x_125 >= 0, z' = 1 + x_125 + x_27, x_24 >= 0, x_27 >= 0 encode_f(z, z') -{ 4 + s85 + 11*x_116 + 6*x_116^2 + 11*x_24 + 6*x_24^2 }-> s87 :|: s84 >= 0, s84 <= x_116, s85 >= 0, s85 <= x_24, s86 >= 0, s86 <= s85, s87 >= 0, s87 <= 0, z = 1 + x_116 + x_24, x_116 >= 0, x_24 >= 0, z' >= 0 encode_f(z, z') -{ -2 + s88 + -1*z' + 6*z'^2 }-> s89 :|: s88 >= 0, s88 <= z' - 1, s89 >= 0, s89 <= 1 + s88, z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s91 + s92 + 11*x_128 + 6*x_128^2 + 11*x_28 + 6*x_28^2 }-> s93 :|: s90 >= 0, s90 <= x_128, s91 >= 0, s91 <= x_28, s92 >= 0, s92 <= s91, s93 >= 0, s93 <= s92, z >= 0, x_128 >= 0, z' = 1 + x_128 + x_28, x_28 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s94 :|: s94 >= 0, s94 <= z, z >= 0 encode_h(z) -{ 0 }-> 0 :|: z >= 0 encode_h(z) -{ 1 + 11*z + 6*z^2 }-> 1 + s95 :|: s95 >= 0, s95 <= z, z >= 0 f(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z' - 1, z >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0, z = z' - 1 Function symbols to be analyzed: Previous analysis results are: f: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encArg: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [z] encode_h: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [1 + z] encode_f: runtime: O(n^2) [17 + 69*z + 60*z^2 + 96*z' + 66*z'^2], size: O(n^1) [z'] encode_g: runtime: O(n^2) [1 + 11*z + 6*z^2], size: O(n^1) [1 + z] ---------------------------------------- (49) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (50) BOUNDS(1, n^2) ---------------------------------------- (51) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (52) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(x, g(x)) -> x f(x, h(y)) -> f(h(x), y) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (53) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(x, h(y)) ->^+ f(h(x), y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [y / h(y)]. The result substitution is [x / h(x)]. ---------------------------------------- (54) Complex Obligation (BEST) ---------------------------------------- (55) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(x, g(x)) -> x f(x, h(y)) -> f(h(x), y) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (56) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (57) BOUNDS(n^1, INF) ---------------------------------------- (58) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(x, g(x)) -> x f(x, h(y)) -> f(h(x), y) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: INNERMOST