/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 151 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 263 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 984 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(nil) -> nil f(.(nil, y)) -> .(nil, f(y)) f(.(.(x, y), z)) -> f(.(x, .(y, z))) g(nil) -> nil g(.(x, nil)) -> .(g(x), nil) g(.(x, .(y, z))) -> g(.(.(x, y), z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(nil) -> nil f(.(nil, y)) -> .(nil, f(y)) f(.(.(x, y), z)) -> f(.(x, .(y, z))) g(nil) -> nil g(.(x, nil)) -> .(g(x), nil) g(.(x, .(y, z))) -> g(.(.(x, y), z)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(nil) -> nil f(.(nil, y)) -> .(nil, f(y)) f(.(.(x, y), z)) -> f(.(x, .(y, z))) g(nil) -> nil g(.(x, nil)) -> .(g(x), nil) g(.(x, .(y, z))) -> g(.(.(x, y), z)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(nil) -> nil f(.(nil, y)) -> .(nil, f(y)) f(.(.(x, y), z)) -> f(.(x, .(y, z))) g(nil) -> nil g(.(x, nil)) -> .(g(x), nil) g(.(x, .(y, z))) -> g(.(.(x, y), z)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: f(nil) -> nil f(.(nil, y)) -> .(nil, f(y)) f(.(.(x, y), z)) -> f(.(x, .(y, z))) g(nil) -> nil g(.(x, nil)) -> .(g(x), nil) g(.(x, .(y, z))) -> g(.(.(x, y), z)) encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) Types: f :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g nil :: nil:.:cons_f:cons_g . :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g g :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encArg :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g cons_f :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g cons_g :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encode_f :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encode_nil :: nil:.:cons_f:cons_g encode_. :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encode_g :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g hole_nil:.:cons_f:cons_g1_0 :: nil:.:cons_f:cons_g gen_nil:.:cons_f:cons_g2_0 :: Nat -> nil:.:cons_f:cons_g ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, g, encArg They will be analysed ascendingly in the following order: f < encArg g < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: f(nil) -> nil f(.(nil, y)) -> .(nil, f(y)) f(.(.(x, y), z)) -> f(.(x, .(y, z))) g(nil) -> nil g(.(x, nil)) -> .(g(x), nil) g(.(x, .(y, z))) -> g(.(.(x, y), z)) encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) Types: f :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g nil :: nil:.:cons_f:cons_g . :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g g :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encArg :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g cons_f :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g cons_g :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encode_f :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encode_nil :: nil:.:cons_f:cons_g encode_. :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encode_g :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g hole_nil:.:cons_f:cons_g1_0 :: nil:.:cons_f:cons_g gen_nil:.:cons_f:cons_g2_0 :: Nat -> nil:.:cons_f:cons_g Generator Equations: gen_nil:.:cons_f:cons_g2_0(0) <=> nil gen_nil:.:cons_f:cons_g2_0(+(x, 1)) <=> .(nil, gen_nil:.:cons_f:cons_g2_0(x)) The following defined symbols remain to be analysed: f, g, encArg They will be analysed ascendingly in the following order: f < encArg g < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_nil:.:cons_f:cons_g2_0(n4_0)) -> gen_nil:.:cons_f:cons_g2_0(n4_0), rt in Omega(1 + n4_0) Induction Base: f(gen_nil:.:cons_f:cons_g2_0(0)) ->_R^Omega(1) nil Induction Step: f(gen_nil:.:cons_f:cons_g2_0(+(n4_0, 1))) ->_R^Omega(1) .(nil, f(gen_nil:.:cons_f:cons_g2_0(n4_0))) ->_IH .(nil, gen_nil:.:cons_f:cons_g2_0(c5_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: f(nil) -> nil f(.(nil, y)) -> .(nil, f(y)) f(.(.(x, y), z)) -> f(.(x, .(y, z))) g(nil) -> nil g(.(x, nil)) -> .(g(x), nil) g(.(x, .(y, z))) -> g(.(.(x, y), z)) encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) Types: f :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g nil :: nil:.:cons_f:cons_g . :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g g :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encArg :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g cons_f :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g cons_g :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encode_f :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encode_nil :: nil:.:cons_f:cons_g encode_. :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encode_g :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g hole_nil:.:cons_f:cons_g1_0 :: nil:.:cons_f:cons_g gen_nil:.:cons_f:cons_g2_0 :: Nat -> nil:.:cons_f:cons_g Generator Equations: gen_nil:.:cons_f:cons_g2_0(0) <=> nil gen_nil:.:cons_f:cons_g2_0(+(x, 1)) <=> .(nil, gen_nil:.:cons_f:cons_g2_0(x)) The following defined symbols remain to be analysed: f, g, encArg They will be analysed ascendingly in the following order: f < encArg g < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: f(nil) -> nil f(.(nil, y)) -> .(nil, f(y)) f(.(.(x, y), z)) -> f(.(x, .(y, z))) g(nil) -> nil g(.(x, nil)) -> .(g(x), nil) g(.(x, .(y, z))) -> g(.(.(x, y), z)) encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) Types: f :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g nil :: nil:.:cons_f:cons_g . :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g g :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encArg :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g cons_f :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g cons_g :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encode_f :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encode_nil :: nil:.:cons_f:cons_g encode_. :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g encode_g :: nil:.:cons_f:cons_g -> nil:.:cons_f:cons_g hole_nil:.:cons_f:cons_g1_0 :: nil:.:cons_f:cons_g gen_nil:.:cons_f:cons_g2_0 :: Nat -> nil:.:cons_f:cons_g Lemmas: f(gen_nil:.:cons_f:cons_g2_0(n4_0)) -> gen_nil:.:cons_f:cons_g2_0(n4_0), rt in Omega(1 + n4_0) Generator Equations: gen_nil:.:cons_f:cons_g2_0(0) <=> nil gen_nil:.:cons_f:cons_g2_0(+(x, 1)) <=> .(nil, gen_nil:.:cons_f:cons_g2_0(x)) The following defined symbols remain to be analysed: g, encArg They will be analysed ascendingly in the following order: g < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_nil:.:cons_f:cons_g2_0(n11152_0)) -> gen_nil:.:cons_f:cons_g2_0(n11152_0), rt in Omega(0) Induction Base: encArg(gen_nil:.:cons_f:cons_g2_0(0)) ->_R^Omega(0) nil Induction Step: encArg(gen_nil:.:cons_f:cons_g2_0(+(n11152_0, 1))) ->_R^Omega(0) .(encArg(nil), encArg(gen_nil:.:cons_f:cons_g2_0(n11152_0))) ->_R^Omega(0) .(nil, encArg(gen_nil:.:cons_f:cons_g2_0(n11152_0))) ->_IH .(nil, gen_nil:.:cons_f:cons_g2_0(c11153_0)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)