/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 193 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 8551 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 35 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sqr(s(x)), sum(x)) sqr(x) -> *(x, x) sum(s(x)) -> +(*(s(x), s(x)), sum(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sqr(s(x)), sum(x)) sqr(x) -> *(x, x) sum(s(x)) -> +(*(s(x), s(x)), sum(x)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sqr(s(x)), sum(x)) sqr(x) -> *(x, x) sum(s(x)) -> +(*(s(x), s(x)), sum(x)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0') -> 0' sum(s(x)) -> +'(sqr(s(x)), sum(x)) sqr(x) -> *'(x, x) sum(s(x)) -> +'(*'(s(x), s(x)), sum(x)) The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(+'(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sqr(s(x)), sum(x)) sqr(x) -> *'(x, x) sum(s(x)) -> +'(*'(s(x), s(x)), sum(x)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(+'(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) Types: sum :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr 0' :: 0':s:+':*':cons_sum:cons_sqr s :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr +' :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr sqr :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr *' :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encArg :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr cons_sum :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr cons_sqr :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_sum :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_0 :: 0':s:+':*':cons_sum:cons_sqr encode_s :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_+ :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_sqr :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_* :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr hole_0':s:+':*':cons_sum:cons_sqr1_3 :: 0':s:+':*':cons_sum:cons_sqr gen_0':s:+':*':cons_sum:cons_sqr2_3 :: Nat -> 0':s:+':*':cons_sum:cons_sqr ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sum, encArg They will be analysed ascendingly in the following order: sum < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sqr(s(x)), sum(x)) sqr(x) -> *'(x, x) sum(s(x)) -> +'(*'(s(x), s(x)), sum(x)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(+'(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) Types: sum :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr 0' :: 0':s:+':*':cons_sum:cons_sqr s :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr +' :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr sqr :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr *' :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encArg :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr cons_sum :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr cons_sqr :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_sum :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_0 :: 0':s:+':*':cons_sum:cons_sqr encode_s :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_+ :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_sqr :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_* :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr hole_0':s:+':*':cons_sum:cons_sqr1_3 :: 0':s:+':*':cons_sum:cons_sqr gen_0':s:+':*':cons_sum:cons_sqr2_3 :: Nat -> 0':s:+':*':cons_sum:cons_sqr Generator Equations: gen_0':s:+':*':cons_sum:cons_sqr2_3(0) <=> 0' gen_0':s:+':*':cons_sum:cons_sqr2_3(+(x, 1)) <=> s(gen_0':s:+':*':cons_sum:cons_sqr2_3(x)) The following defined symbols remain to be analysed: sum, encArg They will be analysed ascendingly in the following order: sum < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sum(gen_0':s:+':*':cons_sum:cons_sqr2_3(n4_3)) -> *3_3, rt in Omega(n4_3) Induction Base: sum(gen_0':s:+':*':cons_sum:cons_sqr2_3(0)) Induction Step: sum(gen_0':s:+':*':cons_sum:cons_sqr2_3(+(n4_3, 1))) ->_R^Omega(1) +'(*'(s(gen_0':s:+':*':cons_sum:cons_sqr2_3(n4_3)), s(gen_0':s:+':*':cons_sum:cons_sqr2_3(n4_3))), sum(gen_0':s:+':*':cons_sum:cons_sqr2_3(n4_3))) ->_IH +'(*'(s(gen_0':s:+':*':cons_sum:cons_sqr2_3(n4_3)), s(gen_0':s:+':*':cons_sum:cons_sqr2_3(n4_3))), *3_3) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sqr(s(x)), sum(x)) sqr(x) -> *'(x, x) sum(s(x)) -> +'(*'(s(x), s(x)), sum(x)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(+'(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) Types: sum :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr 0' :: 0':s:+':*':cons_sum:cons_sqr s :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr +' :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr sqr :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr *' :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encArg :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr cons_sum :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr cons_sqr :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_sum :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_0 :: 0':s:+':*':cons_sum:cons_sqr encode_s :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_+ :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_sqr :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_* :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr hole_0':s:+':*':cons_sum:cons_sqr1_3 :: 0':s:+':*':cons_sum:cons_sqr gen_0':s:+':*':cons_sum:cons_sqr2_3 :: Nat -> 0':s:+':*':cons_sum:cons_sqr Generator Equations: gen_0':s:+':*':cons_sum:cons_sqr2_3(0) <=> 0' gen_0':s:+':*':cons_sum:cons_sqr2_3(+(x, 1)) <=> s(gen_0':s:+':*':cons_sum:cons_sqr2_3(x)) The following defined symbols remain to be analysed: sum, encArg They will be analysed ascendingly in the following order: sum < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sqr(s(x)), sum(x)) sqr(x) -> *'(x, x) sum(s(x)) -> +'(*'(s(x), s(x)), sum(x)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(+'(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) Types: sum :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr 0' :: 0':s:+':*':cons_sum:cons_sqr s :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr +' :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr sqr :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr *' :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encArg :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr cons_sum :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr cons_sqr :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_sum :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_0 :: 0':s:+':*':cons_sum:cons_sqr encode_s :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_+ :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_sqr :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr encode_* :: 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr -> 0':s:+':*':cons_sum:cons_sqr hole_0':s:+':*':cons_sum:cons_sqr1_3 :: 0':s:+':*':cons_sum:cons_sqr gen_0':s:+':*':cons_sum:cons_sqr2_3 :: Nat -> 0':s:+':*':cons_sum:cons_sqr Lemmas: sum(gen_0':s:+':*':cons_sum:cons_sqr2_3(n4_3)) -> *3_3, rt in Omega(n4_3) Generator Equations: gen_0':s:+':*':cons_sum:cons_sqr2_3(0) <=> 0' gen_0':s:+':*':cons_sum:cons_sqr2_3(+(x, 1)) <=> s(gen_0':s:+':*':cons_sum:cons_sqr2_3(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':s:+':*':cons_sum:cons_sqr2_3(n77745_3)) -> gen_0':s:+':*':cons_sum:cons_sqr2_3(n77745_3), rt in Omega(0) Induction Base: encArg(gen_0':s:+':*':cons_sum:cons_sqr2_3(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':s:+':*':cons_sum:cons_sqr2_3(+(n77745_3, 1))) ->_R^Omega(0) s(encArg(gen_0':s:+':*':cons_sum:cons_sqr2_3(n77745_3))) ->_IH s(gen_0':s:+':*':cons_sum:cons_sqr2_3(c77746_3)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)