/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 156 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 4 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 3 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 70 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 4 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 180 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 86 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 560 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 1310 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 847 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 308 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 137 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) FinalProof [FINISHED, 0 ms] (50) BOUNDS(1, n^2) (51) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (52) CpxRelTRS (53) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (54) typed CpxTrs (55) OrderProof [LOWER BOUND(ID), 0 ms] (56) typed CpxTrs (57) RewriteLemmaProof [LOWER BOUND(ID), 356 ms] (58) BEST (59) proven lower bound (60) LowerBoundPropagationProof [FINISHED, 0 ms] (61) BOUNDS(n^1, INF) (62) typed CpxTrs (63) RewriteLemmaProof [LOWER BOUND(ID), 46 ms] (64) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(x, x) -> a f(g(x), y) -> f(x, y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(x, x) -> a f(g(x), y) -> f(x, y) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(x, x) -> a f(g(x), y) -> f(x, y) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(x, x) -> a [1] f(g(x), y) -> f(x, y) [1] encArg(a) -> a [0] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_g(x_1) -> g(encArg(x_1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, x) -> a [1] f(g(x), y) -> f(x, y) [1] encArg(a) -> a [0] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_g(x_1) -> g(encArg(x_1)) [0] The TRS has the following type information: f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f a :: a:g:cons_f g :: a:g:cons_f -> a:g:cons_f encArg :: a:g:cons_f -> a:g:cons_f cons_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_a :: a:g:cons_f encode_g :: a:g:cons_f -> a:g:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: f_2 encArg_1 encode_f_2 encode_a encode_g_1 Due to the following rules being added: encArg(v0) -> a [0] encode_f(v0, v1) -> a [0] encode_a -> a [0] encode_g(v0) -> a [0] f(v0, v1) -> a [0] And the following fresh constants: none ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, x) -> a [1] f(g(x), y) -> f(x, y) [1] encArg(a) -> a [0] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_g(x_1) -> g(encArg(x_1)) [0] encArg(v0) -> a [0] encode_f(v0, v1) -> a [0] encode_a -> a [0] encode_g(v0) -> a [0] f(v0, v1) -> a [0] The TRS has the following type information: f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f a :: a:g:cons_f g :: a:g:cons_f -> a:g:cons_f encArg :: a:g:cons_f -> a:g:cons_f cons_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_a :: a:g:cons_f encode_g :: a:g:cons_f -> a:g:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, x) -> a [1] f(g(x), y) -> f(x, y) [1] encArg(a) -> a [0] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_f(a, a)) -> f(a, a) [0] encArg(cons_f(a, g(x_11))) -> f(a, g(encArg(x_11))) [0] encArg(cons_f(a, cons_f(x_12, x_2''))) -> f(a, f(encArg(x_12), encArg(x_2''))) [0] encArg(cons_f(a, x_2)) -> f(a, a) [0] encArg(cons_f(g(x_1'), a)) -> f(g(encArg(x_1')), a) [0] encArg(cons_f(g(x_1'), g(x_13))) -> f(g(encArg(x_1')), g(encArg(x_13))) [0] encArg(cons_f(g(x_1'), cons_f(x_14, x_21))) -> f(g(encArg(x_1')), f(encArg(x_14), encArg(x_21))) [0] encArg(cons_f(g(x_1'), x_2)) -> f(g(encArg(x_1')), a) [0] encArg(cons_f(cons_f(x_1'', x_2'), a)) -> f(f(encArg(x_1''), encArg(x_2')), a) [0] encArg(cons_f(cons_f(x_1'', x_2'), g(x_15))) -> f(f(encArg(x_1''), encArg(x_2')), g(encArg(x_15))) [0] encArg(cons_f(cons_f(x_1'', x_2'), cons_f(x_16, x_22))) -> f(f(encArg(x_1''), encArg(x_2')), f(encArg(x_16), encArg(x_22))) [0] encArg(cons_f(cons_f(x_1'', x_2'), x_2)) -> f(f(encArg(x_1''), encArg(x_2')), a) [0] encArg(cons_f(x_1, a)) -> f(a, a) [0] encArg(cons_f(x_1, g(x_17))) -> f(a, g(encArg(x_17))) [0] encArg(cons_f(x_1, cons_f(x_18, x_23))) -> f(a, f(encArg(x_18), encArg(x_23))) [0] encArg(cons_f(x_1, x_2)) -> f(a, a) [0] encode_f(a, a) -> f(a, a) [0] encode_f(a, g(x_111)) -> f(a, g(encArg(x_111))) [0] encode_f(a, cons_f(x_112, x_25)) -> f(a, f(encArg(x_112), encArg(x_25))) [0] encode_f(a, x_2) -> f(a, a) [0] encode_f(g(x_19), a) -> f(g(encArg(x_19)), a) [0] encode_f(g(x_19), g(x_113)) -> f(g(encArg(x_19)), g(encArg(x_113))) [0] encode_f(g(x_19), cons_f(x_114, x_26)) -> f(g(encArg(x_19)), f(encArg(x_114), encArg(x_26))) [0] encode_f(g(x_19), x_2) -> f(g(encArg(x_19)), a) [0] encode_f(cons_f(x_110, x_24), a) -> f(f(encArg(x_110), encArg(x_24)), a) [0] encode_f(cons_f(x_110, x_24), g(x_115)) -> f(f(encArg(x_110), encArg(x_24)), g(encArg(x_115))) [0] encode_f(cons_f(x_110, x_24), cons_f(x_116, x_27)) -> f(f(encArg(x_110), encArg(x_24)), f(encArg(x_116), encArg(x_27))) [0] encode_f(cons_f(x_110, x_24), x_2) -> f(f(encArg(x_110), encArg(x_24)), a) [0] encode_f(x_1, a) -> f(a, a) [0] encode_f(x_1, g(x_117)) -> f(a, g(encArg(x_117))) [0] encode_f(x_1, cons_f(x_118, x_28)) -> f(a, f(encArg(x_118), encArg(x_28))) [0] encode_f(x_1, x_2) -> f(a, a) [0] encode_a -> a [0] encode_g(x_1) -> g(encArg(x_1)) [0] encArg(v0) -> a [0] encode_f(v0, v1) -> a [0] encode_a -> a [0] encode_g(v0) -> a [0] f(v0, v1) -> a [0] The TRS has the following type information: f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f a :: a:g:cons_f g :: a:g:cons_f -> a:g:cons_f encArg :: a:g:cons_f -> a:g:cons_f cons_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_a :: a:g:cons_f encode_g :: a:g:cons_f -> a:g:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: a => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), f(encArg(x_16), encArg(x_22))) :|: x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_12), encArg(x_2''))) :|: z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_18), encArg(x_23))) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: z = 1 + 0 + 0 encArg(z) -{ 0 }-> f(0, 0) :|: z = 1 + 0 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: z = 1 + x_1 + 0, x_1 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_11)) :|: x_11 >= 0, z = 1 + 0 + (1 + x_11) encArg(z) -{ 0 }-> f(0, 1 + encArg(x_17)) :|: x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_21))) :|: x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: z = 1 + (1 + x_1') + 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), f(encArg(x_116), encArg(x_27))) :|: x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, x_2 >= 0, z' = x_2, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 1 + encArg(x_115)) :|: x_115 >= 0, z' = 1 + x_115, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_112), encArg(x_25))) :|: x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_118), encArg(x_28))) :|: x_1 >= 0, z = x_1, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z = 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: x_2 >= 0, z' = x_2, z = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = x_1, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(x_111)) :|: z' = 1 + x_111, z = 0, x_111 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(x_117)) :|: x_1 >= 0, x_117 >= 0, z' = 1 + x_117, z = x_1 encode_f(z, z') -{ 0 }-> f(1 + encArg(x_19), f(encArg(x_114), encArg(x_26))) :|: x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z = 1 + x_19, x_19 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(x_19), 0) :|: z = 1 + x_19, z' = 0, x_19 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(x_19), 0) :|: x_2 >= 0, z' = x_2, z = 1 + x_19, x_19 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(x_19), 1 + encArg(x_113)) :|: x_113 >= 0, z = 1 + x_19, z' = 1 + x_113, x_19 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_g(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 f(z, z') -{ 1 }-> f(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y f(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = x f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), f(encArg(x_16), encArg(x_22))) :|: x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_12), encArg(x_2''))) :|: z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_18), encArg(x_23))) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: z = 1 + 0 + 0 encArg(z) -{ 0 }-> f(0, 0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_17)) :|: x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 0 }-> f(0, 1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_21))) :|: x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2), 0) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), f(encArg(x_116), encArg(x_27))) :|: x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_112), encArg(x_25))) :|: x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_118), encArg(x_28))) :|: z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z = 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z' >= 0, z = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z = 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_114), encArg(x_26))) :|: x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' = 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> f(z - 1, z') :|: z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_a } { f } { encArg } { encode_f } { encode_g } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), f(encArg(x_16), encArg(x_22))) :|: x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_12), encArg(x_2''))) :|: z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_18), encArg(x_23))) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: z = 1 + 0 + 0 encArg(z) -{ 0 }-> f(0, 0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_17)) :|: x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 0 }-> f(0, 1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_21))) :|: x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2), 0) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), f(encArg(x_116), encArg(x_27))) :|: x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_112), encArg(x_25))) :|: x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_118), encArg(x_28))) :|: z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z = 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z' >= 0, z = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z = 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_114), encArg(x_26))) :|: x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' = 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> f(z - 1, z') :|: z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_a}, {f}, {encArg}, {encode_f}, {encode_g} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), f(encArg(x_16), encArg(x_22))) :|: x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_12), encArg(x_2''))) :|: z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_18), encArg(x_23))) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: z = 1 + 0 + 0 encArg(z) -{ 0 }-> f(0, 0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_17)) :|: x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 0 }-> f(0, 1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_21))) :|: x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2), 0) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), f(encArg(x_116), encArg(x_27))) :|: x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_112), encArg(x_25))) :|: x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_118), encArg(x_28))) :|: z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z = 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z' >= 0, z = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z = 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_114), encArg(x_26))) :|: x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' = 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> f(z - 1, z') :|: z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_a}, {f}, {encArg}, {encode_f}, {encode_g} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), f(encArg(x_16), encArg(x_22))) :|: x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_12), encArg(x_2''))) :|: z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_18), encArg(x_23))) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: z = 1 + 0 + 0 encArg(z) -{ 0 }-> f(0, 0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_17)) :|: x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 0 }-> f(0, 1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_21))) :|: x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2), 0) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), f(encArg(x_116), encArg(x_27))) :|: x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_112), encArg(x_25))) :|: x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_118), encArg(x_28))) :|: z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z = 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z' >= 0, z = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z = 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_114), encArg(x_26))) :|: x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' = 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> f(z - 1, z') :|: z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_a}, {f}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: ?, size: O(1) [0] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), f(encArg(x_16), encArg(x_22))) :|: x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_12), encArg(x_2''))) :|: z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_18), encArg(x_23))) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: z = 1 + 0 + 0 encArg(z) -{ 0 }-> f(0, 0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_17)) :|: x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 0 }-> f(0, 1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_21))) :|: x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2), 0) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), f(encArg(x_116), encArg(x_27))) :|: x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_112), encArg(x_25))) :|: x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_118), encArg(x_28))) :|: z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z = 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z' >= 0, z = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z = 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_114), encArg(x_26))) :|: x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' = 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> f(z - 1, z') :|: z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), f(encArg(x_16), encArg(x_22))) :|: x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_12), encArg(x_2''))) :|: z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_18), encArg(x_23))) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: z = 1 + 0 + 0 encArg(z) -{ 0 }-> f(0, 0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_17)) :|: x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 0 }-> f(0, 1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_21))) :|: x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2), 0) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), f(encArg(x_116), encArg(x_27))) :|: x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_112), encArg(x_25))) :|: x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_118), encArg(x_28))) :|: z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z = 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z' >= 0, z = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z = 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_114), encArg(x_26))) :|: x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' = 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> f(z - 1, z') :|: z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), f(encArg(x_16), encArg(x_22))) :|: x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_12), encArg(x_2''))) :|: z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_18), encArg(x_23))) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: z = 1 + 0 + 0 encArg(z) -{ 0 }-> f(0, 0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_17)) :|: x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 0 }-> f(0, 1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_21))) :|: x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2), 0) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), f(encArg(x_116), encArg(x_27))) :|: x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_112), encArg(x_25))) :|: x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_118), encArg(x_28))) :|: z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z = 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z' >= 0, z = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z = 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_114), encArg(x_26))) :|: x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' = 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> f(z - 1, z') :|: z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: ?, size: O(1) [0] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), f(encArg(x_16), encArg(x_22))) :|: x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_12), encArg(x_2''))) :|: z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_18), encArg(x_23))) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: z = 1 + 0 + 0 encArg(z) -{ 0 }-> f(0, 0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(0, 0) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_17)) :|: x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 0 }-> f(0, 1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_21))) :|: x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2), 0) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), f(encArg(x_116), encArg(x_27))) :|: x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_112), encArg(x_25))) :|: x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_118), encArg(x_28))) :|: z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z = 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z' >= 0, z = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(0, 0) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z = 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_114), encArg(x_26))) :|: x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' = 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> f(z - 1, z') :|: z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z], size: O(1) [0] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), f(encArg(x_16), encArg(x_22))) :|: x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_12), encArg(x_2''))) :|: z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_18), encArg(x_23))) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_17)) :|: x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 0 }-> f(0, 1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_21))) :|: x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2), 0) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z = 0, z' = 0 encode_f(z, z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z = 0 encode_f(z, z') -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0, z' = 0 encode_f(z, z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), f(encArg(x_116), encArg(x_27))) :|: x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_112), encArg(x_25))) :|: x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_118), encArg(x_28))) :|: z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z = 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_114), encArg(x_26))) :|: x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' = 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 + z }-> s :|: s >= 0, s <= 0, z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z], size: O(1) [0] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), f(encArg(x_16), encArg(x_22))) :|: x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_12), encArg(x_2''))) :|: z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_18), encArg(x_23))) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_17)) :|: x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 0 }-> f(0, 1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_21))) :|: x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2), 0) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z = 0, z' = 0 encode_f(z, z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z = 0 encode_f(z, z') -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0, z' = 0 encode_f(z, z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), f(encArg(x_116), encArg(x_27))) :|: x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_112), encArg(x_25))) :|: x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_118), encArg(x_28))) :|: z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z = 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_114), encArg(x_26))) :|: x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' = 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 + z }-> s :|: s >= 0, s <= 0, z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z], size: O(1) [0] encArg: runtime: ?, size: O(n^1) [z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 2*z + 2*z^2 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), f(encArg(x_16), encArg(x_22))) :|: x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 0) :|: x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_1''), encArg(x_2')), 1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_12), encArg(x_2''))) :|: z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 0 }-> f(0, f(encArg(x_18), encArg(x_23))) :|: x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 0 }-> f(0, 1 + encArg(x_17)) :|: x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 0 }-> f(0, 1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), f(encArg(x_14), encArg(x_21))) :|: x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 0) :|: x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 0 }-> f(1 + encArg(x_1'), 1 + encArg(x_13)) :|: z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2), 0) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z = 0, z' = 0 encode_f(z, z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z = 0 encode_f(z, z') -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0, z' = 0 encode_f(z, z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), f(encArg(x_116), encArg(x_27))) :|: x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 0) :|: z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(f(encArg(x_110), encArg(x_24)), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_112), encArg(x_25))) :|: x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 0 }-> f(0, f(encArg(x_118), encArg(x_28))) :|: z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z = 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(0, 1 + encArg(z' - 1)) :|: z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), f(encArg(x_114), encArg(x_26))) :|: x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' = 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 0) :|: z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> f(1 + encArg(z - 1), 1 + encArg(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 + z }-> s :|: s >= 0, s <= 0, z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z], size: O(1) [0] encArg: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(n^1) [z] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + s9 + 2*x_12 + 2*x_12^2 + 2*x_2'' + 2*x_2''^2 }-> s12 :|: s9 >= 0, s9 <= x_12, s10 >= 0, s10 <= x_2'', s11 >= 0, s11 <= 0, s12 >= 0, s12 <= 0, z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 7 + s13 + -6*z + 2*z^2 }-> s14 :|: s13 >= 0, s13 <= z - 2, s14 >= 0, s14 <= 0, z - 2 >= 0 encArg(z) -{ 4 + s15 + 2*x_1' + 2*x_1'^2 + 2*x_13 + 2*x_13^2 }-> s17 :|: s15 >= 0, s15 <= x_1', s16 >= 0, s16 <= x_13, s17 >= 0, s17 <= 0, z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 6 + s18 + s19 + 2*x_1' + 2*x_1'^2 + 2*x_14 + 2*x_14^2 + 2*x_21 + 2*x_21^2 }-> s22 :|: s18 >= 0, s18 <= x_1', s19 >= 0, s19 <= x_14, s20 >= 0, s20 <= x_21, s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 3 + s23 + 2*x_1' + 2*x_1'^2 }-> s24 :|: s23 >= 0, s23 <= x_1', s24 >= 0, s24 <= 0, x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 4 + s25 + s27 + 2*x_1'' + 2*x_1''^2 + 2*x_2' + 2*x_2'^2 }-> s28 :|: s25 >= 0, s25 <= x_1'', s26 >= 0, s26 <= x_2', s27 >= 0, s27 <= 0, s28 >= 0, s28 <= 0, x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 5 + s29 + s31 + 2*x_1'' + 2*x_1''^2 + 2*x_15 + 2*x_15^2 + 2*x_2' + 2*x_2'^2 }-> s33 :|: s29 >= 0, s29 <= x_1'', s30 >= 0, s30 <= x_2', s31 >= 0, s31 <= 0, s32 >= 0, s32 <= x_15, s33 >= 0, s33 <= 0, x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 7 + s34 + s36 + s37 + 2*x_1'' + 2*x_1''^2 + 2*x_16 + 2*x_16^2 + 2*x_2' + 2*x_2'^2 + 2*x_22 + 2*x_22^2 }-> s40 :|: s34 >= 0, s34 <= x_1'', s35 >= 0, s35 <= x_2', s36 >= 0, s36 <= 0, s37 >= 0, s37 <= x_16, s38 >= 0, s38 <= x_22, s39 >= 0, s39 <= 0, s40 >= 0, s40 <= 0, x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 4 + s41 + s43 + 2*x_1'' + 2*x_1''^2 + 2*x_2' + 2*x_2'^2 }-> s44 :|: s41 >= 0, s41 <= x_1'', s42 >= 0, s42 <= x_2', s43 >= 0, s43 <= 0, s44 >= 0, s44 <= 0, x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 2 + 2*x_17 + 2*x_17^2 }-> s46 :|: s45 >= 0, s45 <= x_17, s46 >= 0, s46 <= 0, x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 4 + s47 + 2*x_18 + 2*x_18^2 + 2*x_23 + 2*x_23^2 }-> s50 :|: s47 >= 0, s47 <= x_18, s48 >= 0, s48 <= x_23, s49 >= 0, s49 <= 0, s50 >= 0, s50 <= 0, x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 6 + -6*z + 2*z^2 }-> s8 :|: s7 >= 0, s7 <= z - 2, s8 >= 0, s8 <= 0, z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -2*z + 2*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= z - 1, z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z = 0, z' = 0 encode_f(z, z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z = 0 encode_f(z, z') -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0, z' = 0 encode_f(z, z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 2 + -2*z' + 2*z'^2 }-> s52 :|: s51 >= 0, s51 <= z' - 1, s52 >= 0, s52 <= 0, z = 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s53 + 2*x_112 + 2*x_112^2 + 2*x_25 + 2*x_25^2 }-> s56 :|: s53 >= 0, s53 <= x_112, s54 >= 0, s54 <= x_25, s55 >= 0, s55 <= 0, s56 >= 0, s56 <= 0, x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 3 + s57 + -2*z + 2*z^2 }-> s58 :|: s57 >= 0, s57 <= z - 1, s58 >= 0, s58 <= 0, z' = 0, z - 1 >= 0 encode_f(z, z') -{ 4 + s59 + -2*z + 2*z^2 + -2*z' + 2*z'^2 }-> s61 :|: s59 >= 0, s59 <= z - 1, s60 >= 0, s60 <= z' - 1, s61 >= 0, s61 <= 0, z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 6 + s62 + s63 + 2*x_114 + 2*x_114^2 + 2*x_26 + 2*x_26^2 + -2*z + 2*z^2 }-> s66 :|: s62 >= 0, s62 <= z - 1, s63 >= 0, s63 <= x_114, s64 >= 0, s64 <= x_26, s65 >= 0, s65 <= 0, s66 >= 0, s66 <= 0, x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 3 + s67 + -2*z + 2*z^2 }-> s68 :|: s67 >= 0, s67 <= z - 1, s68 >= 0, s68 <= 0, z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 4 + s69 + s71 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 }-> s72 :|: s69 >= 0, s69 <= x_110, s70 >= 0, s70 <= x_24, s71 >= 0, s71 <= 0, s72 >= 0, s72 <= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 5 + s73 + s75 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 + -2*z' + 2*z'^2 }-> s77 :|: s73 >= 0, s73 <= x_110, s74 >= 0, s74 <= x_24, s75 >= 0, s75 <= 0, s76 >= 0, s76 <= z' - 1, s77 >= 0, s77 <= 0, z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 7 + s78 + s80 + s81 + 2*x_110 + 2*x_110^2 + 2*x_116 + 2*x_116^2 + 2*x_24 + 2*x_24^2 + 2*x_27 + 2*x_27^2 }-> s84 :|: s78 >= 0, s78 <= x_110, s79 >= 0, s79 <= x_24, s80 >= 0, s80 <= 0, s81 >= 0, s81 <= x_116, s82 >= 0, s82 <= x_27, s83 >= 0, s83 <= 0, s84 >= 0, s84 <= 0, x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 4 + s85 + s87 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 }-> s88 :|: s85 >= 0, s85 <= x_110, s86 >= 0, s86 <= x_24, s87 >= 0, s87 <= 0, s88 >= 0, s88 <= 0, z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 2 + -2*z' + 2*z'^2 }-> s90 :|: s89 >= 0, s89 <= z' - 1, s90 >= 0, s90 <= 0, z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s91 + 2*x_118 + 2*x_118^2 + 2*x_28 + 2*x_28^2 }-> s94 :|: s91 >= 0, s91 <= x_118, s92 >= 0, s92 <= x_28, s93 >= 0, s93 <= 0, s94 >= 0, s94 <= 0, z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 + 2*z + 2*z^2 }-> 1 + s95 :|: s95 >= 0, s95 <= z, z >= 0 f(z, z') -{ 1 + z }-> s :|: s >= 0, s <= 0, z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z], size: O(1) [0] encArg: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(n^1) [z] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + s9 + 2*x_12 + 2*x_12^2 + 2*x_2'' + 2*x_2''^2 }-> s12 :|: s9 >= 0, s9 <= x_12, s10 >= 0, s10 <= x_2'', s11 >= 0, s11 <= 0, s12 >= 0, s12 <= 0, z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 7 + s13 + -6*z + 2*z^2 }-> s14 :|: s13 >= 0, s13 <= z - 2, s14 >= 0, s14 <= 0, z - 2 >= 0 encArg(z) -{ 4 + s15 + 2*x_1' + 2*x_1'^2 + 2*x_13 + 2*x_13^2 }-> s17 :|: s15 >= 0, s15 <= x_1', s16 >= 0, s16 <= x_13, s17 >= 0, s17 <= 0, z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 6 + s18 + s19 + 2*x_1' + 2*x_1'^2 + 2*x_14 + 2*x_14^2 + 2*x_21 + 2*x_21^2 }-> s22 :|: s18 >= 0, s18 <= x_1', s19 >= 0, s19 <= x_14, s20 >= 0, s20 <= x_21, s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 3 + s23 + 2*x_1' + 2*x_1'^2 }-> s24 :|: s23 >= 0, s23 <= x_1', s24 >= 0, s24 <= 0, x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 4 + s25 + s27 + 2*x_1'' + 2*x_1''^2 + 2*x_2' + 2*x_2'^2 }-> s28 :|: s25 >= 0, s25 <= x_1'', s26 >= 0, s26 <= x_2', s27 >= 0, s27 <= 0, s28 >= 0, s28 <= 0, x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 5 + s29 + s31 + 2*x_1'' + 2*x_1''^2 + 2*x_15 + 2*x_15^2 + 2*x_2' + 2*x_2'^2 }-> s33 :|: s29 >= 0, s29 <= x_1'', s30 >= 0, s30 <= x_2', s31 >= 0, s31 <= 0, s32 >= 0, s32 <= x_15, s33 >= 0, s33 <= 0, x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 7 + s34 + s36 + s37 + 2*x_1'' + 2*x_1''^2 + 2*x_16 + 2*x_16^2 + 2*x_2' + 2*x_2'^2 + 2*x_22 + 2*x_22^2 }-> s40 :|: s34 >= 0, s34 <= x_1'', s35 >= 0, s35 <= x_2', s36 >= 0, s36 <= 0, s37 >= 0, s37 <= x_16, s38 >= 0, s38 <= x_22, s39 >= 0, s39 <= 0, s40 >= 0, s40 <= 0, x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 4 + s41 + s43 + 2*x_1'' + 2*x_1''^2 + 2*x_2' + 2*x_2'^2 }-> s44 :|: s41 >= 0, s41 <= x_1'', s42 >= 0, s42 <= x_2', s43 >= 0, s43 <= 0, s44 >= 0, s44 <= 0, x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 2 + 2*x_17 + 2*x_17^2 }-> s46 :|: s45 >= 0, s45 <= x_17, s46 >= 0, s46 <= 0, x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 4 + s47 + 2*x_18 + 2*x_18^2 + 2*x_23 + 2*x_23^2 }-> s50 :|: s47 >= 0, s47 <= x_18, s48 >= 0, s48 <= x_23, s49 >= 0, s49 <= 0, s50 >= 0, s50 <= 0, x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 6 + -6*z + 2*z^2 }-> s8 :|: s7 >= 0, s7 <= z - 2, s8 >= 0, s8 <= 0, z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -2*z + 2*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= z - 1, z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z = 0, z' = 0 encode_f(z, z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z = 0 encode_f(z, z') -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0, z' = 0 encode_f(z, z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 2 + -2*z' + 2*z'^2 }-> s52 :|: s51 >= 0, s51 <= z' - 1, s52 >= 0, s52 <= 0, z = 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s53 + 2*x_112 + 2*x_112^2 + 2*x_25 + 2*x_25^2 }-> s56 :|: s53 >= 0, s53 <= x_112, s54 >= 0, s54 <= x_25, s55 >= 0, s55 <= 0, s56 >= 0, s56 <= 0, x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 3 + s57 + -2*z + 2*z^2 }-> s58 :|: s57 >= 0, s57 <= z - 1, s58 >= 0, s58 <= 0, z' = 0, z - 1 >= 0 encode_f(z, z') -{ 4 + s59 + -2*z + 2*z^2 + -2*z' + 2*z'^2 }-> s61 :|: s59 >= 0, s59 <= z - 1, s60 >= 0, s60 <= z' - 1, s61 >= 0, s61 <= 0, z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 6 + s62 + s63 + 2*x_114 + 2*x_114^2 + 2*x_26 + 2*x_26^2 + -2*z + 2*z^2 }-> s66 :|: s62 >= 0, s62 <= z - 1, s63 >= 0, s63 <= x_114, s64 >= 0, s64 <= x_26, s65 >= 0, s65 <= 0, s66 >= 0, s66 <= 0, x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 3 + s67 + -2*z + 2*z^2 }-> s68 :|: s67 >= 0, s67 <= z - 1, s68 >= 0, s68 <= 0, z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 4 + s69 + s71 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 }-> s72 :|: s69 >= 0, s69 <= x_110, s70 >= 0, s70 <= x_24, s71 >= 0, s71 <= 0, s72 >= 0, s72 <= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 5 + s73 + s75 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 + -2*z' + 2*z'^2 }-> s77 :|: s73 >= 0, s73 <= x_110, s74 >= 0, s74 <= x_24, s75 >= 0, s75 <= 0, s76 >= 0, s76 <= z' - 1, s77 >= 0, s77 <= 0, z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 7 + s78 + s80 + s81 + 2*x_110 + 2*x_110^2 + 2*x_116 + 2*x_116^2 + 2*x_24 + 2*x_24^2 + 2*x_27 + 2*x_27^2 }-> s84 :|: s78 >= 0, s78 <= x_110, s79 >= 0, s79 <= x_24, s80 >= 0, s80 <= 0, s81 >= 0, s81 <= x_116, s82 >= 0, s82 <= x_27, s83 >= 0, s83 <= 0, s84 >= 0, s84 <= 0, x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 4 + s85 + s87 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 }-> s88 :|: s85 >= 0, s85 <= x_110, s86 >= 0, s86 <= x_24, s87 >= 0, s87 <= 0, s88 >= 0, s88 <= 0, z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 2 + -2*z' + 2*z'^2 }-> s90 :|: s89 >= 0, s89 <= z' - 1, s90 >= 0, s90 <= 0, z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s91 + 2*x_118 + 2*x_118^2 + 2*x_28 + 2*x_28^2 }-> s94 :|: s91 >= 0, s91 <= x_118, s92 >= 0, s92 <= x_28, s93 >= 0, s93 <= 0, s94 >= 0, s94 <= 0, z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 + 2*z + 2*z^2 }-> 1 + s95 :|: s95 >= 0, s95 <= z, z >= 0 f(z, z') -{ 1 + z }-> s :|: s >= 0, s <= 0, z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z], size: O(1) [0] encArg: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(n^1) [z] encode_f: runtime: ?, size: O(1) [0] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 52 + 20*z + 24*z^2 + 20*z' + 24*z'^2 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + s9 + 2*x_12 + 2*x_12^2 + 2*x_2'' + 2*x_2''^2 }-> s12 :|: s9 >= 0, s9 <= x_12, s10 >= 0, s10 <= x_2'', s11 >= 0, s11 <= 0, s12 >= 0, s12 <= 0, z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 7 + s13 + -6*z + 2*z^2 }-> s14 :|: s13 >= 0, s13 <= z - 2, s14 >= 0, s14 <= 0, z - 2 >= 0 encArg(z) -{ 4 + s15 + 2*x_1' + 2*x_1'^2 + 2*x_13 + 2*x_13^2 }-> s17 :|: s15 >= 0, s15 <= x_1', s16 >= 0, s16 <= x_13, s17 >= 0, s17 <= 0, z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 6 + s18 + s19 + 2*x_1' + 2*x_1'^2 + 2*x_14 + 2*x_14^2 + 2*x_21 + 2*x_21^2 }-> s22 :|: s18 >= 0, s18 <= x_1', s19 >= 0, s19 <= x_14, s20 >= 0, s20 <= x_21, s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 3 + s23 + 2*x_1' + 2*x_1'^2 }-> s24 :|: s23 >= 0, s23 <= x_1', s24 >= 0, s24 <= 0, x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 4 + s25 + s27 + 2*x_1'' + 2*x_1''^2 + 2*x_2' + 2*x_2'^2 }-> s28 :|: s25 >= 0, s25 <= x_1'', s26 >= 0, s26 <= x_2', s27 >= 0, s27 <= 0, s28 >= 0, s28 <= 0, x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 5 + s29 + s31 + 2*x_1'' + 2*x_1''^2 + 2*x_15 + 2*x_15^2 + 2*x_2' + 2*x_2'^2 }-> s33 :|: s29 >= 0, s29 <= x_1'', s30 >= 0, s30 <= x_2', s31 >= 0, s31 <= 0, s32 >= 0, s32 <= x_15, s33 >= 0, s33 <= 0, x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 7 + s34 + s36 + s37 + 2*x_1'' + 2*x_1''^2 + 2*x_16 + 2*x_16^2 + 2*x_2' + 2*x_2'^2 + 2*x_22 + 2*x_22^2 }-> s40 :|: s34 >= 0, s34 <= x_1'', s35 >= 0, s35 <= x_2', s36 >= 0, s36 <= 0, s37 >= 0, s37 <= x_16, s38 >= 0, s38 <= x_22, s39 >= 0, s39 <= 0, s40 >= 0, s40 <= 0, x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 4 + s41 + s43 + 2*x_1'' + 2*x_1''^2 + 2*x_2' + 2*x_2'^2 }-> s44 :|: s41 >= 0, s41 <= x_1'', s42 >= 0, s42 <= x_2', s43 >= 0, s43 <= 0, s44 >= 0, s44 <= 0, x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 2 + 2*x_17 + 2*x_17^2 }-> s46 :|: s45 >= 0, s45 <= x_17, s46 >= 0, s46 <= 0, x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 4 + s47 + 2*x_18 + 2*x_18^2 + 2*x_23 + 2*x_23^2 }-> s50 :|: s47 >= 0, s47 <= x_18, s48 >= 0, s48 <= x_23, s49 >= 0, s49 <= 0, s50 >= 0, s50 <= 0, x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 6 + -6*z + 2*z^2 }-> s8 :|: s7 >= 0, s7 <= z - 2, s8 >= 0, s8 <= 0, z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -2*z + 2*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= z - 1, z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z = 0, z' = 0 encode_f(z, z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z = 0 encode_f(z, z') -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0, z' = 0 encode_f(z, z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 2 + -2*z' + 2*z'^2 }-> s52 :|: s51 >= 0, s51 <= z' - 1, s52 >= 0, s52 <= 0, z = 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s53 + 2*x_112 + 2*x_112^2 + 2*x_25 + 2*x_25^2 }-> s56 :|: s53 >= 0, s53 <= x_112, s54 >= 0, s54 <= x_25, s55 >= 0, s55 <= 0, s56 >= 0, s56 <= 0, x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 3 + s57 + -2*z + 2*z^2 }-> s58 :|: s57 >= 0, s57 <= z - 1, s58 >= 0, s58 <= 0, z' = 0, z - 1 >= 0 encode_f(z, z') -{ 4 + s59 + -2*z + 2*z^2 + -2*z' + 2*z'^2 }-> s61 :|: s59 >= 0, s59 <= z - 1, s60 >= 0, s60 <= z' - 1, s61 >= 0, s61 <= 0, z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 6 + s62 + s63 + 2*x_114 + 2*x_114^2 + 2*x_26 + 2*x_26^2 + -2*z + 2*z^2 }-> s66 :|: s62 >= 0, s62 <= z - 1, s63 >= 0, s63 <= x_114, s64 >= 0, s64 <= x_26, s65 >= 0, s65 <= 0, s66 >= 0, s66 <= 0, x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 3 + s67 + -2*z + 2*z^2 }-> s68 :|: s67 >= 0, s67 <= z - 1, s68 >= 0, s68 <= 0, z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 4 + s69 + s71 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 }-> s72 :|: s69 >= 0, s69 <= x_110, s70 >= 0, s70 <= x_24, s71 >= 0, s71 <= 0, s72 >= 0, s72 <= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 5 + s73 + s75 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 + -2*z' + 2*z'^2 }-> s77 :|: s73 >= 0, s73 <= x_110, s74 >= 0, s74 <= x_24, s75 >= 0, s75 <= 0, s76 >= 0, s76 <= z' - 1, s77 >= 0, s77 <= 0, z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 7 + s78 + s80 + s81 + 2*x_110 + 2*x_110^2 + 2*x_116 + 2*x_116^2 + 2*x_24 + 2*x_24^2 + 2*x_27 + 2*x_27^2 }-> s84 :|: s78 >= 0, s78 <= x_110, s79 >= 0, s79 <= x_24, s80 >= 0, s80 <= 0, s81 >= 0, s81 <= x_116, s82 >= 0, s82 <= x_27, s83 >= 0, s83 <= 0, s84 >= 0, s84 <= 0, x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 4 + s85 + s87 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 }-> s88 :|: s85 >= 0, s85 <= x_110, s86 >= 0, s86 <= x_24, s87 >= 0, s87 <= 0, s88 >= 0, s88 <= 0, z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 2 + -2*z' + 2*z'^2 }-> s90 :|: s89 >= 0, s89 <= z' - 1, s90 >= 0, s90 <= 0, z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s91 + 2*x_118 + 2*x_118^2 + 2*x_28 + 2*x_28^2 }-> s94 :|: s91 >= 0, s91 <= x_118, s92 >= 0, s92 <= x_28, s93 >= 0, s93 <= 0, s94 >= 0, s94 <= 0, z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 + 2*z + 2*z^2 }-> 1 + s95 :|: s95 >= 0, s95 <= z, z >= 0 f(z, z') -{ 1 + z }-> s :|: s >= 0, s <= 0, z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z], size: O(1) [0] encArg: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [52 + 20*z + 24*z^2 + 20*z' + 24*z'^2], size: O(1) [0] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + s9 + 2*x_12 + 2*x_12^2 + 2*x_2'' + 2*x_2''^2 }-> s12 :|: s9 >= 0, s9 <= x_12, s10 >= 0, s10 <= x_2'', s11 >= 0, s11 <= 0, s12 >= 0, s12 <= 0, z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 7 + s13 + -6*z + 2*z^2 }-> s14 :|: s13 >= 0, s13 <= z - 2, s14 >= 0, s14 <= 0, z - 2 >= 0 encArg(z) -{ 4 + s15 + 2*x_1' + 2*x_1'^2 + 2*x_13 + 2*x_13^2 }-> s17 :|: s15 >= 0, s15 <= x_1', s16 >= 0, s16 <= x_13, s17 >= 0, s17 <= 0, z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 6 + s18 + s19 + 2*x_1' + 2*x_1'^2 + 2*x_14 + 2*x_14^2 + 2*x_21 + 2*x_21^2 }-> s22 :|: s18 >= 0, s18 <= x_1', s19 >= 0, s19 <= x_14, s20 >= 0, s20 <= x_21, s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 3 + s23 + 2*x_1' + 2*x_1'^2 }-> s24 :|: s23 >= 0, s23 <= x_1', s24 >= 0, s24 <= 0, x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 4 + s25 + s27 + 2*x_1'' + 2*x_1''^2 + 2*x_2' + 2*x_2'^2 }-> s28 :|: s25 >= 0, s25 <= x_1'', s26 >= 0, s26 <= x_2', s27 >= 0, s27 <= 0, s28 >= 0, s28 <= 0, x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 5 + s29 + s31 + 2*x_1'' + 2*x_1''^2 + 2*x_15 + 2*x_15^2 + 2*x_2' + 2*x_2'^2 }-> s33 :|: s29 >= 0, s29 <= x_1'', s30 >= 0, s30 <= x_2', s31 >= 0, s31 <= 0, s32 >= 0, s32 <= x_15, s33 >= 0, s33 <= 0, x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 7 + s34 + s36 + s37 + 2*x_1'' + 2*x_1''^2 + 2*x_16 + 2*x_16^2 + 2*x_2' + 2*x_2'^2 + 2*x_22 + 2*x_22^2 }-> s40 :|: s34 >= 0, s34 <= x_1'', s35 >= 0, s35 <= x_2', s36 >= 0, s36 <= 0, s37 >= 0, s37 <= x_16, s38 >= 0, s38 <= x_22, s39 >= 0, s39 <= 0, s40 >= 0, s40 <= 0, x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 4 + s41 + s43 + 2*x_1'' + 2*x_1''^2 + 2*x_2' + 2*x_2'^2 }-> s44 :|: s41 >= 0, s41 <= x_1'', s42 >= 0, s42 <= x_2', s43 >= 0, s43 <= 0, s44 >= 0, s44 <= 0, x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 2 + 2*x_17 + 2*x_17^2 }-> s46 :|: s45 >= 0, s45 <= x_17, s46 >= 0, s46 <= 0, x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 4 + s47 + 2*x_18 + 2*x_18^2 + 2*x_23 + 2*x_23^2 }-> s50 :|: s47 >= 0, s47 <= x_18, s48 >= 0, s48 <= x_23, s49 >= 0, s49 <= 0, s50 >= 0, s50 <= 0, x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 6 + -6*z + 2*z^2 }-> s8 :|: s7 >= 0, s7 <= z - 2, s8 >= 0, s8 <= 0, z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -2*z + 2*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= z - 1, z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z = 0, z' = 0 encode_f(z, z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z = 0 encode_f(z, z') -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0, z' = 0 encode_f(z, z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 2 + -2*z' + 2*z'^2 }-> s52 :|: s51 >= 0, s51 <= z' - 1, s52 >= 0, s52 <= 0, z = 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s53 + 2*x_112 + 2*x_112^2 + 2*x_25 + 2*x_25^2 }-> s56 :|: s53 >= 0, s53 <= x_112, s54 >= 0, s54 <= x_25, s55 >= 0, s55 <= 0, s56 >= 0, s56 <= 0, x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 3 + s57 + -2*z + 2*z^2 }-> s58 :|: s57 >= 0, s57 <= z - 1, s58 >= 0, s58 <= 0, z' = 0, z - 1 >= 0 encode_f(z, z') -{ 4 + s59 + -2*z + 2*z^2 + -2*z' + 2*z'^2 }-> s61 :|: s59 >= 0, s59 <= z - 1, s60 >= 0, s60 <= z' - 1, s61 >= 0, s61 <= 0, z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 6 + s62 + s63 + 2*x_114 + 2*x_114^2 + 2*x_26 + 2*x_26^2 + -2*z + 2*z^2 }-> s66 :|: s62 >= 0, s62 <= z - 1, s63 >= 0, s63 <= x_114, s64 >= 0, s64 <= x_26, s65 >= 0, s65 <= 0, s66 >= 0, s66 <= 0, x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 3 + s67 + -2*z + 2*z^2 }-> s68 :|: s67 >= 0, s67 <= z - 1, s68 >= 0, s68 <= 0, z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 4 + s69 + s71 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 }-> s72 :|: s69 >= 0, s69 <= x_110, s70 >= 0, s70 <= x_24, s71 >= 0, s71 <= 0, s72 >= 0, s72 <= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 5 + s73 + s75 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 + -2*z' + 2*z'^2 }-> s77 :|: s73 >= 0, s73 <= x_110, s74 >= 0, s74 <= x_24, s75 >= 0, s75 <= 0, s76 >= 0, s76 <= z' - 1, s77 >= 0, s77 <= 0, z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 7 + s78 + s80 + s81 + 2*x_110 + 2*x_110^2 + 2*x_116 + 2*x_116^2 + 2*x_24 + 2*x_24^2 + 2*x_27 + 2*x_27^2 }-> s84 :|: s78 >= 0, s78 <= x_110, s79 >= 0, s79 <= x_24, s80 >= 0, s80 <= 0, s81 >= 0, s81 <= x_116, s82 >= 0, s82 <= x_27, s83 >= 0, s83 <= 0, s84 >= 0, s84 <= 0, x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 4 + s85 + s87 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 }-> s88 :|: s85 >= 0, s85 <= x_110, s86 >= 0, s86 <= x_24, s87 >= 0, s87 <= 0, s88 >= 0, s88 <= 0, z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 2 + -2*z' + 2*z'^2 }-> s90 :|: s89 >= 0, s89 <= z' - 1, s90 >= 0, s90 <= 0, z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s91 + 2*x_118 + 2*x_118^2 + 2*x_28 + 2*x_28^2 }-> s94 :|: s91 >= 0, s91 <= x_118, s92 >= 0, s92 <= x_28, s93 >= 0, s93 <= 0, s94 >= 0, s94 <= 0, z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 + 2*z + 2*z^2 }-> 1 + s95 :|: s95 >= 0, s95 <= z, z >= 0 f(z, z') -{ 1 + z }-> s :|: s >= 0, s <= 0, z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z], size: O(1) [0] encArg: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [52 + 20*z + 24*z^2 + 20*z' + 24*z'^2], size: O(1) [0] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + s9 + 2*x_12 + 2*x_12^2 + 2*x_2'' + 2*x_2''^2 }-> s12 :|: s9 >= 0, s9 <= x_12, s10 >= 0, s10 <= x_2'', s11 >= 0, s11 <= 0, s12 >= 0, s12 <= 0, z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 7 + s13 + -6*z + 2*z^2 }-> s14 :|: s13 >= 0, s13 <= z - 2, s14 >= 0, s14 <= 0, z - 2 >= 0 encArg(z) -{ 4 + s15 + 2*x_1' + 2*x_1'^2 + 2*x_13 + 2*x_13^2 }-> s17 :|: s15 >= 0, s15 <= x_1', s16 >= 0, s16 <= x_13, s17 >= 0, s17 <= 0, z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 6 + s18 + s19 + 2*x_1' + 2*x_1'^2 + 2*x_14 + 2*x_14^2 + 2*x_21 + 2*x_21^2 }-> s22 :|: s18 >= 0, s18 <= x_1', s19 >= 0, s19 <= x_14, s20 >= 0, s20 <= x_21, s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 3 + s23 + 2*x_1' + 2*x_1'^2 }-> s24 :|: s23 >= 0, s23 <= x_1', s24 >= 0, s24 <= 0, x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 4 + s25 + s27 + 2*x_1'' + 2*x_1''^2 + 2*x_2' + 2*x_2'^2 }-> s28 :|: s25 >= 0, s25 <= x_1'', s26 >= 0, s26 <= x_2', s27 >= 0, s27 <= 0, s28 >= 0, s28 <= 0, x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 5 + s29 + s31 + 2*x_1'' + 2*x_1''^2 + 2*x_15 + 2*x_15^2 + 2*x_2' + 2*x_2'^2 }-> s33 :|: s29 >= 0, s29 <= x_1'', s30 >= 0, s30 <= x_2', s31 >= 0, s31 <= 0, s32 >= 0, s32 <= x_15, s33 >= 0, s33 <= 0, x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 7 + s34 + s36 + s37 + 2*x_1'' + 2*x_1''^2 + 2*x_16 + 2*x_16^2 + 2*x_2' + 2*x_2'^2 + 2*x_22 + 2*x_22^2 }-> s40 :|: s34 >= 0, s34 <= x_1'', s35 >= 0, s35 <= x_2', s36 >= 0, s36 <= 0, s37 >= 0, s37 <= x_16, s38 >= 0, s38 <= x_22, s39 >= 0, s39 <= 0, s40 >= 0, s40 <= 0, x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 4 + s41 + s43 + 2*x_1'' + 2*x_1''^2 + 2*x_2' + 2*x_2'^2 }-> s44 :|: s41 >= 0, s41 <= x_1'', s42 >= 0, s42 <= x_2', s43 >= 0, s43 <= 0, s44 >= 0, s44 <= 0, x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 2 + 2*x_17 + 2*x_17^2 }-> s46 :|: s45 >= 0, s45 <= x_17, s46 >= 0, s46 <= 0, x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 4 + s47 + 2*x_18 + 2*x_18^2 + 2*x_23 + 2*x_23^2 }-> s50 :|: s47 >= 0, s47 <= x_18, s48 >= 0, s48 <= x_23, s49 >= 0, s49 <= 0, s50 >= 0, s50 <= 0, x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 6 + -6*z + 2*z^2 }-> s8 :|: s7 >= 0, s7 <= z - 2, s8 >= 0, s8 <= 0, z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -2*z + 2*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= z - 1, z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z = 0, z' = 0 encode_f(z, z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z = 0 encode_f(z, z') -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0, z' = 0 encode_f(z, z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 2 + -2*z' + 2*z'^2 }-> s52 :|: s51 >= 0, s51 <= z' - 1, s52 >= 0, s52 <= 0, z = 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s53 + 2*x_112 + 2*x_112^2 + 2*x_25 + 2*x_25^2 }-> s56 :|: s53 >= 0, s53 <= x_112, s54 >= 0, s54 <= x_25, s55 >= 0, s55 <= 0, s56 >= 0, s56 <= 0, x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 3 + s57 + -2*z + 2*z^2 }-> s58 :|: s57 >= 0, s57 <= z - 1, s58 >= 0, s58 <= 0, z' = 0, z - 1 >= 0 encode_f(z, z') -{ 4 + s59 + -2*z + 2*z^2 + -2*z' + 2*z'^2 }-> s61 :|: s59 >= 0, s59 <= z - 1, s60 >= 0, s60 <= z' - 1, s61 >= 0, s61 <= 0, z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 6 + s62 + s63 + 2*x_114 + 2*x_114^2 + 2*x_26 + 2*x_26^2 + -2*z + 2*z^2 }-> s66 :|: s62 >= 0, s62 <= z - 1, s63 >= 0, s63 <= x_114, s64 >= 0, s64 <= x_26, s65 >= 0, s65 <= 0, s66 >= 0, s66 <= 0, x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 3 + s67 + -2*z + 2*z^2 }-> s68 :|: s67 >= 0, s67 <= z - 1, s68 >= 0, s68 <= 0, z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 4 + s69 + s71 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 }-> s72 :|: s69 >= 0, s69 <= x_110, s70 >= 0, s70 <= x_24, s71 >= 0, s71 <= 0, s72 >= 0, s72 <= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 5 + s73 + s75 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 + -2*z' + 2*z'^2 }-> s77 :|: s73 >= 0, s73 <= x_110, s74 >= 0, s74 <= x_24, s75 >= 0, s75 <= 0, s76 >= 0, s76 <= z' - 1, s77 >= 0, s77 <= 0, z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 7 + s78 + s80 + s81 + 2*x_110 + 2*x_110^2 + 2*x_116 + 2*x_116^2 + 2*x_24 + 2*x_24^2 + 2*x_27 + 2*x_27^2 }-> s84 :|: s78 >= 0, s78 <= x_110, s79 >= 0, s79 <= x_24, s80 >= 0, s80 <= 0, s81 >= 0, s81 <= x_116, s82 >= 0, s82 <= x_27, s83 >= 0, s83 <= 0, s84 >= 0, s84 <= 0, x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 4 + s85 + s87 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 }-> s88 :|: s85 >= 0, s85 <= x_110, s86 >= 0, s86 <= x_24, s87 >= 0, s87 <= 0, s88 >= 0, s88 <= 0, z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 2 + -2*z' + 2*z'^2 }-> s90 :|: s89 >= 0, s89 <= z' - 1, s90 >= 0, s90 <= 0, z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s91 + 2*x_118 + 2*x_118^2 + 2*x_28 + 2*x_28^2 }-> s94 :|: s91 >= 0, s91 <= x_118, s92 >= 0, s92 <= x_28, s93 >= 0, s93 <= 0, s94 >= 0, s94 <= 0, z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 + 2*z + 2*z^2 }-> 1 + s95 :|: s95 >= 0, s95 <= z, z >= 0 f(z, z') -{ 1 + z }-> s :|: s >= 0, s <= 0, z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z], size: O(1) [0] encArg: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [52 + 20*z + 24*z^2 + 20*z' + 24*z'^2], size: O(1) [0] encode_g: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 2*z + 2*z^2 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0, z = 1 + 0 + 0 encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z - 1 >= 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + s9 + 2*x_12 + 2*x_12^2 + 2*x_2'' + 2*x_2''^2 }-> s12 :|: s9 >= 0, s9 <= x_12, s10 >= 0, s10 <= x_2'', s11 >= 0, s11 <= 0, s12 >= 0, s12 <= 0, z = 1 + 0 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z) -{ 7 + s13 + -6*z + 2*z^2 }-> s14 :|: s13 >= 0, s13 <= z - 2, s14 >= 0, s14 <= 0, z - 2 >= 0 encArg(z) -{ 4 + s15 + 2*x_1' + 2*x_1'^2 + 2*x_13 + 2*x_13^2 }-> s17 :|: s15 >= 0, s15 <= x_1', s16 >= 0, s16 <= x_13, s17 >= 0, s17 <= 0, z = 1 + (1 + x_1') + (1 + x_13), x_13 >= 0, x_1' >= 0 encArg(z) -{ 6 + s18 + s19 + 2*x_1' + 2*x_1'^2 + 2*x_14 + 2*x_14^2 + 2*x_21 + 2*x_21^2 }-> s22 :|: s18 >= 0, s18 <= x_1', s19 >= 0, s19 <= x_14, s20 >= 0, s20 <= x_21, s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, x_14 >= 0, z = 1 + (1 + x_1') + (1 + x_14 + x_21), x_1' >= 0, x_21 >= 0 encArg(z) -{ 3 + s23 + 2*x_1' + 2*x_1'^2 }-> s24 :|: s23 >= 0, s23 <= x_1', s24 >= 0, s24 <= 0, x_1' >= 0, x_2 >= 0, z = 1 + (1 + x_1') + x_2 encArg(z) -{ 4 + s25 + s27 + 2*x_1'' + 2*x_1''^2 + 2*x_2' + 2*x_2'^2 }-> s28 :|: s25 >= 0, s25 <= x_1'', s26 >= 0, s26 <= x_2', s27 >= 0, s27 <= 0, s28 >= 0, s28 <= 0, x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + 0 encArg(z) -{ 5 + s29 + s31 + 2*x_1'' + 2*x_1''^2 + 2*x_15 + 2*x_15^2 + 2*x_2' + 2*x_2'^2 }-> s33 :|: s29 >= 0, s29 <= x_1'', s30 >= 0, s30 <= x_2', s31 >= 0, s31 <= 0, s32 >= 0, s32 <= x_15, s33 >= 0, s33 <= 0, x_15 >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_15), x_1'' >= 0, x_2' >= 0 encArg(z) -{ 7 + s34 + s36 + s37 + 2*x_1'' + 2*x_1''^2 + 2*x_16 + 2*x_16^2 + 2*x_2' + 2*x_2'^2 + 2*x_22 + 2*x_22^2 }-> s40 :|: s34 >= 0, s34 <= x_1'', s35 >= 0, s35 <= x_2', s36 >= 0, s36 <= 0, s37 >= 0, s37 <= x_16, s38 >= 0, s38 <= x_22, s39 >= 0, s39 <= 0, s40 >= 0, s40 <= 0, x_1'' >= 0, x_16 >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + (1 + x_16 + x_22), x_22 >= 0 encArg(z) -{ 4 + s41 + s43 + 2*x_1'' + 2*x_1''^2 + 2*x_2' + 2*x_2'^2 }-> s44 :|: s41 >= 0, s41 <= x_1'', s42 >= 0, s42 <= x_2', s43 >= 0, s43 <= 0, s44 >= 0, s44 <= 0, x_1'' >= 0, x_2' >= 0, z = 1 + (1 + x_1'' + x_2') + x_2, x_2 >= 0 encArg(z) -{ 2 + 2*x_17 + 2*x_17^2 }-> s46 :|: s45 >= 0, s45 <= x_17, s46 >= 0, s46 <= 0, x_1 >= 0, x_17 >= 0, z = 1 + x_1 + (1 + x_17) encArg(z) -{ 4 + s47 + 2*x_18 + 2*x_18^2 + 2*x_23 + 2*x_23^2 }-> s50 :|: s47 >= 0, s47 <= x_18, s48 >= 0, s48 <= x_23, s49 >= 0, s49 <= 0, s50 >= 0, s50 <= 0, x_1 >= 0, z = 1 + x_1 + (1 + x_18 + x_23), x_23 >= 0, x_18 >= 0 encArg(z) -{ 6 + -6*z + 2*z^2 }-> s8 :|: s7 >= 0, s7 <= z - 2, s8 >= 0, s8 <= 0, z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -2*z + 2*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= z - 1, z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z = 0, z' = 0 encode_f(z, z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z = 0 encode_f(z, z') -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0, z' = 0 encode_f(z, z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 2 + -2*z' + 2*z'^2 }-> s52 :|: s51 >= 0, s51 <= z' - 1, s52 >= 0, s52 <= 0, z = 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s53 + 2*x_112 + 2*x_112^2 + 2*x_25 + 2*x_25^2 }-> s56 :|: s53 >= 0, s53 <= x_112, s54 >= 0, s54 <= x_25, s55 >= 0, s55 <= 0, s56 >= 0, s56 <= 0, x_25 >= 0, z' = 1 + x_112 + x_25, z = 0, x_112 >= 0 encode_f(z, z') -{ 3 + s57 + -2*z + 2*z^2 }-> s58 :|: s57 >= 0, s57 <= z - 1, s58 >= 0, s58 <= 0, z' = 0, z - 1 >= 0 encode_f(z, z') -{ 4 + s59 + -2*z + 2*z^2 + -2*z' + 2*z'^2 }-> s61 :|: s59 >= 0, s59 <= z - 1, s60 >= 0, s60 <= z' - 1, s61 >= 0, s61 <= 0, z' - 1 >= 0, z - 1 >= 0 encode_f(z, z') -{ 6 + s62 + s63 + 2*x_114 + 2*x_114^2 + 2*x_26 + 2*x_26^2 + -2*z + 2*z^2 }-> s66 :|: s62 >= 0, s62 <= z - 1, s63 >= 0, s63 <= x_114, s64 >= 0, s64 <= x_26, s65 >= 0, s65 <= 0, s66 >= 0, s66 <= 0, x_114 >= 0, x_26 >= 0, z' = 1 + x_114 + x_26, z - 1 >= 0 encode_f(z, z') -{ 3 + s67 + -2*z + 2*z^2 }-> s68 :|: s67 >= 0, s67 <= z - 1, s68 >= 0, s68 <= 0, z' >= 0, z - 1 >= 0 encode_f(z, z') -{ 4 + s69 + s71 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 }-> s72 :|: s69 >= 0, s69 <= x_110, s70 >= 0, s70 <= x_24, s71 >= 0, s71 <= 0, s72 >= 0, s72 <= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0, z' = 0 encode_f(z, z') -{ 5 + s73 + s75 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 + -2*z' + 2*z'^2 }-> s77 :|: s73 >= 0, s73 <= x_110, s74 >= 0, s74 <= x_24, s75 >= 0, s75 <= 0, s76 >= 0, s76 <= z' - 1, s77 >= 0, s77 <= 0, z' - 1 >= 0, z = 1 + x_110 + x_24, x_24 >= 0, x_110 >= 0 encode_f(z, z') -{ 7 + s78 + s80 + s81 + 2*x_110 + 2*x_110^2 + 2*x_116 + 2*x_116^2 + 2*x_24 + 2*x_24^2 + 2*x_27 + 2*x_27^2 }-> s84 :|: s78 >= 0, s78 <= x_110, s79 >= 0, s79 <= x_24, s80 >= 0, s80 <= 0, s81 >= 0, s81 <= x_116, s82 >= 0, s82 <= x_27, s83 >= 0, s83 <= 0, s84 >= 0, s84 <= 0, x_116 >= 0, z' = 1 + x_116 + x_27, z = 1 + x_110 + x_24, x_24 >= 0, x_27 >= 0, x_110 >= 0 encode_f(z, z') -{ 4 + s85 + s87 + 2*x_110 + 2*x_110^2 + 2*x_24 + 2*x_24^2 }-> s88 :|: s85 >= 0, s85 <= x_110, s86 >= 0, s86 <= x_24, s87 >= 0, s87 <= 0, s88 >= 0, s88 <= 0, z = 1 + x_110 + x_24, x_24 >= 0, z' >= 0, x_110 >= 0 encode_f(z, z') -{ 2 + -2*z' + 2*z'^2 }-> s90 :|: s89 >= 0, s89 <= z' - 1, s90 >= 0, s90 <= 0, z >= 0, z' - 1 >= 0 encode_f(z, z') -{ 4 + s91 + 2*x_118 + 2*x_118^2 + 2*x_28 + 2*x_28^2 }-> s94 :|: s91 >= 0, s91 <= x_118, s92 >= 0, s92 <= x_28, s93 >= 0, s93 <= 0, s94 >= 0, s94 <= 0, z >= 0, z' = 1 + x_118 + x_28, x_118 >= 0, x_28 >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 + 2*z + 2*z^2 }-> 1 + s95 :|: s95 >= 0, s95 <= z, z >= 0 f(z, z') -{ 1 + z }-> s :|: s >= 0, s <= 0, z - 1 >= 0, z' >= 0 f(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z], size: O(1) [0] encArg: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [52 + 20*z + 24*z^2 + 20*z' + 24*z'^2], size: O(1) [0] encode_g: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(n^1) [1 + z] ---------------------------------------- (49) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (50) BOUNDS(1, n^2) ---------------------------------------- (51) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (52) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x, x) -> a f(g(x), y) -> f(x, y) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (53) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (54) Obligation: Innermost TRS: Rules: f(x, x) -> a f(g(x), y) -> f(x, y) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) Types: f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f a :: a:g:cons_f g :: a:g:cons_f -> a:g:cons_f encArg :: a:g:cons_f -> a:g:cons_f cons_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_a :: a:g:cons_f encode_g :: a:g:cons_f -> a:g:cons_f hole_a:g:cons_f1_0 :: a:g:cons_f gen_a:g:cons_f2_0 :: Nat -> a:g:cons_f ---------------------------------------- (55) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (56) Obligation: Innermost TRS: Rules: f(x, x) -> a f(g(x), y) -> f(x, y) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) Types: f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f a :: a:g:cons_f g :: a:g:cons_f -> a:g:cons_f encArg :: a:g:cons_f -> a:g:cons_f cons_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_a :: a:g:cons_f encode_g :: a:g:cons_f -> a:g:cons_f hole_a:g:cons_f1_0 :: a:g:cons_f gen_a:g:cons_f2_0 :: Nat -> a:g:cons_f Generator Equations: gen_a:g:cons_f2_0(0) <=> a gen_a:g:cons_f2_0(+(x, 1)) <=> g(gen_a:g:cons_f2_0(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (57) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_a:g:cons_f2_0(+(1, n4_0)), gen_a:g:cons_f2_0(b)) -> *3_0, rt in Omega(n4_0) Induction Base: f(gen_a:g:cons_f2_0(+(1, 0)), gen_a:g:cons_f2_0(b)) Induction Step: f(gen_a:g:cons_f2_0(+(1, +(n4_0, 1))), gen_a:g:cons_f2_0(b)) ->_R^Omega(1) f(gen_a:g:cons_f2_0(+(1, n4_0)), gen_a:g:cons_f2_0(b)) ->_IH *3_0 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (58) Complex Obligation (BEST) ---------------------------------------- (59) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: f(x, x) -> a f(g(x), y) -> f(x, y) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) Types: f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f a :: a:g:cons_f g :: a:g:cons_f -> a:g:cons_f encArg :: a:g:cons_f -> a:g:cons_f cons_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_a :: a:g:cons_f encode_g :: a:g:cons_f -> a:g:cons_f hole_a:g:cons_f1_0 :: a:g:cons_f gen_a:g:cons_f2_0 :: Nat -> a:g:cons_f Generator Equations: gen_a:g:cons_f2_0(0) <=> a gen_a:g:cons_f2_0(+(x, 1)) <=> g(gen_a:g:cons_f2_0(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (60) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (61) BOUNDS(n^1, INF) ---------------------------------------- (62) Obligation: Innermost TRS: Rules: f(x, x) -> a f(g(x), y) -> f(x, y) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) Types: f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f a :: a:g:cons_f g :: a:g:cons_f -> a:g:cons_f encArg :: a:g:cons_f -> a:g:cons_f cons_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_a :: a:g:cons_f encode_g :: a:g:cons_f -> a:g:cons_f hole_a:g:cons_f1_0 :: a:g:cons_f gen_a:g:cons_f2_0 :: Nat -> a:g:cons_f Lemmas: f(gen_a:g:cons_f2_0(+(1, n4_0)), gen_a:g:cons_f2_0(b)) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_a:g:cons_f2_0(0) <=> a gen_a:g:cons_f2_0(+(x, 1)) <=> g(gen_a:g:cons_f2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (63) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_a:g:cons_f2_0(n426_0)) -> gen_a:g:cons_f2_0(n426_0), rt in Omega(0) Induction Base: encArg(gen_a:g:cons_f2_0(0)) ->_R^Omega(0) a Induction Step: encArg(gen_a:g:cons_f2_0(+(n426_0, 1))) ->_R^Omega(0) g(encArg(gen_a:g:cons_f2_0(n426_0))) ->_IH g(gen_a:g:cons_f2_0(c427_0)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (64) BOUNDS(1, INF)