/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 164 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 348 ms] (12) proven lower bound (13) LowerBoundPropagationProof [FINISHED, 0 ms] (14) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: *(x, 1) -> x *(1, y) -> y *(i(x), x) -> 1 *(x, i(x)) -> 1 *(x, *(y, z)) -> *(*(x, y), z) i(1) -> 1 *(*(x, y), i(y)) -> x *(*(x, i(y)), y) -> x i(i(x)) -> x i(*(x, y)) -> *(i(y), i(x)) k(x, 1) -> 1 k(x, x) -> 1 *(k(x, y), k(y, x)) -> 1 *(*(i(x), k(y, z)), x) -> k(*(*(i(x), y), x), *(*(i(x), z), x)) k(*(x, i(y)), *(y, i(x))) -> 1 S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(1) -> 1 encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_k(x_1, x_2)) -> k(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_i(x_1) -> i(encArg(x_1)) encode_k(x_1, x_2) -> k(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: *(x, 1) -> x *(1, y) -> y *(i(x), x) -> 1 *(x, i(x)) -> 1 *(x, *(y, z)) -> *(*(x, y), z) i(1) -> 1 *(*(x, y), i(y)) -> x *(*(x, i(y)), y) -> x i(i(x)) -> x i(*(x, y)) -> *(i(y), i(x)) k(x, 1) -> 1 k(x, x) -> 1 *(k(x, y), k(y, x)) -> 1 *(*(i(x), k(y, z)), x) -> k(*(*(i(x), y), x), *(*(i(x), z), x)) k(*(x, i(y)), *(y, i(x))) -> 1 The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_k(x_1, x_2)) -> k(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_i(x_1) -> i(encArg(x_1)) encode_k(x_1, x_2) -> k(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: *(x, 1) -> x *(1, y) -> y *(i(x), x) -> 1 *(x, i(x)) -> 1 *(x, *(y, z)) -> *(*(x, y), z) i(1) -> 1 *(*(x, y), i(y)) -> x *(*(x, i(y)), y) -> x i(i(x)) -> x i(*(x, y)) -> *(i(y), i(x)) k(x, 1) -> 1 k(x, x) -> 1 *(k(x, y), k(y, x)) -> 1 *(*(i(x), k(y, z)), x) -> k(*(*(i(x), y), x), *(*(i(x), z), x)) k(*(x, i(y)), *(y, i(x))) -> 1 The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_k(x_1, x_2)) -> k(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_i(x_1) -> i(encArg(x_1)) encode_k(x_1, x_2) -> k(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: *'(x, 1') -> x *'(1', y) -> y *'(i(x), x) -> 1' *'(x, i(x)) -> 1' *'(x, *'(y, z)) -> *'(*'(x, y), z) i(1') -> 1' *'(*'(x, y), i(y)) -> x *'(*'(x, i(y)), y) -> x i(i(x)) -> x i(*'(x, y)) -> *'(i(y), i(x)) k(x, 1') -> 1' k(x, x) -> 1' *'(k(x, y), k(y, x)) -> 1' *'(*'(i(x), k(y, z)), x) -> k(*'(*'(i(x), y), x), *'(*'(i(x), z), x)) k(*'(x, i(y)), *'(y, i(x))) -> 1' The (relative) TRS S consists of the following rules: encArg(1') -> 1' encArg(cons_*(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_k(x_1, x_2)) -> k(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_i(x_1) -> i(encArg(x_1)) encode_k(x_1, x_2) -> k(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: *'(x, 1') -> x *'(1', y) -> y *'(i(x), x) -> 1' *'(x, i(x)) -> 1' *'(x, *'(y, z)) -> *'(*'(x, y), z) i(1') -> 1' *'(*'(x, y), i(y)) -> x *'(*'(x, i(y)), y) -> x i(i(x)) -> x i(*'(x, y)) -> *'(i(y), i(x)) k(x, 1') -> 1' k(x, x) -> 1' *'(k(x, y), k(y, x)) -> 1' *'(*'(i(x), k(y, z)), x) -> k(*'(*'(i(x), y), x), *'(*'(i(x), z), x)) k(*'(x, i(y)), *'(y, i(x))) -> 1' encArg(1') -> 1' encArg(cons_*(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_k(x_1, x_2)) -> k(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_i(x_1) -> i(encArg(x_1)) encode_k(x_1, x_2) -> k(encArg(x_1), encArg(x_2)) Types: *' :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k 1' :: 1':cons_*:cons_i:cons_k i :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k k :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k encArg :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k cons_* :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k cons_i :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k cons_k :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k encode_* :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k encode_1 :: 1':cons_*:cons_i:cons_k encode_i :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k encode_k :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k hole_1':cons_*:cons_i:cons_k1_0 :: 1':cons_*:cons_i:cons_k gen_1':cons_*:cons_i:cons_k2_0 :: Nat -> 1':cons_*:cons_i:cons_k ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: *', i, encArg They will be analysed ascendingly in the following order: *' = i *' < encArg i < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: *'(x, 1') -> x *'(1', y) -> y *'(i(x), x) -> 1' *'(x, i(x)) -> 1' *'(x, *'(y, z)) -> *'(*'(x, y), z) i(1') -> 1' *'(*'(x, y), i(y)) -> x *'(*'(x, i(y)), y) -> x i(i(x)) -> x i(*'(x, y)) -> *'(i(y), i(x)) k(x, 1') -> 1' k(x, x) -> 1' *'(k(x, y), k(y, x)) -> 1' *'(*'(i(x), k(y, z)), x) -> k(*'(*'(i(x), y), x), *'(*'(i(x), z), x)) k(*'(x, i(y)), *'(y, i(x))) -> 1' encArg(1') -> 1' encArg(cons_*(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_k(x_1, x_2)) -> k(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_i(x_1) -> i(encArg(x_1)) encode_k(x_1, x_2) -> k(encArg(x_1), encArg(x_2)) Types: *' :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k 1' :: 1':cons_*:cons_i:cons_k i :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k k :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k encArg :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k cons_* :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k cons_i :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k cons_k :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k encode_* :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k encode_1 :: 1':cons_*:cons_i:cons_k encode_i :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k encode_k :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k hole_1':cons_*:cons_i:cons_k1_0 :: 1':cons_*:cons_i:cons_k gen_1':cons_*:cons_i:cons_k2_0 :: Nat -> 1':cons_*:cons_i:cons_k Generator Equations: gen_1':cons_*:cons_i:cons_k2_0(0) <=> 1' gen_1':cons_*:cons_i:cons_k2_0(+(x, 1)) <=> cons_*(1', gen_1':cons_*:cons_i:cons_k2_0(x)) The following defined symbols remain to be analysed: i, *', encArg They will be analysed ascendingly in the following order: *' = i *' < encArg i < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_1':cons_*:cons_i:cons_k2_0(n728_0)) -> gen_1':cons_*:cons_i:cons_k2_0(0), rt in Omega(n728_0) Induction Base: encArg(gen_1':cons_*:cons_i:cons_k2_0(0)) ->_R^Omega(0) 1' Induction Step: encArg(gen_1':cons_*:cons_i:cons_k2_0(+(n728_0, 1))) ->_R^Omega(0) *'(encArg(1'), encArg(gen_1':cons_*:cons_i:cons_k2_0(n728_0))) ->_R^Omega(0) *'(1', encArg(gen_1':cons_*:cons_i:cons_k2_0(n728_0))) ->_IH *'(1', gen_1':cons_*:cons_i:cons_k2_0(0)) ->_R^Omega(1) 1' We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: *'(x, 1') -> x *'(1', y) -> y *'(i(x), x) -> 1' *'(x, i(x)) -> 1' *'(x, *'(y, z)) -> *'(*'(x, y), z) i(1') -> 1' *'(*'(x, y), i(y)) -> x *'(*'(x, i(y)), y) -> x i(i(x)) -> x i(*'(x, y)) -> *'(i(y), i(x)) k(x, 1') -> 1' k(x, x) -> 1' *'(k(x, y), k(y, x)) -> 1' *'(*'(i(x), k(y, z)), x) -> k(*'(*'(i(x), y), x), *'(*'(i(x), z), x)) k(*'(x, i(y)), *'(y, i(x))) -> 1' encArg(1') -> 1' encArg(cons_*(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_k(x_1, x_2)) -> k(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_i(x_1) -> i(encArg(x_1)) encode_k(x_1, x_2) -> k(encArg(x_1), encArg(x_2)) Types: *' :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k 1' :: 1':cons_*:cons_i:cons_k i :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k k :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k encArg :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k cons_* :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k cons_i :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k cons_k :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k encode_* :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k encode_1 :: 1':cons_*:cons_i:cons_k encode_i :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k encode_k :: 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k -> 1':cons_*:cons_i:cons_k hole_1':cons_*:cons_i:cons_k1_0 :: 1':cons_*:cons_i:cons_k gen_1':cons_*:cons_i:cons_k2_0 :: Nat -> 1':cons_*:cons_i:cons_k Generator Equations: gen_1':cons_*:cons_i:cons_k2_0(0) <=> 1' gen_1':cons_*:cons_i:cons_k2_0(+(x, 1)) <=> cons_*(1', gen_1':cons_*:cons_i:cons_k2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (13) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (14) BOUNDS(n^1, INF)