/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 217 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [FINISHED, 0 ms] (8) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: bsort(nil) -> nil bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y)))))) bubble(nil) -> nil bubble(.(x, nil)) -> .(x, nil) bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) last(nil) -> 0 last(.(x, nil)) -> x last(.(x, .(y, z))) -> last(.(y, z)) butlast(nil) -> nil butlast(.(x, nil)) -> nil butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(<=(x_1, x_2)) -> <=(encArg(x_1), encArg(x_2)) encArg(0) -> 0 encArg(cons_bsort(x_1)) -> bsort(encArg(x_1)) encArg(cons_bubble(x_1)) -> bubble(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_butlast(x_1)) -> butlast(encArg(x_1)) encode_bsort(x_1) -> bsort(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_last(x_1) -> last(encArg(x_1)) encode_bubble(x_1) -> bubble(encArg(x_1)) encode_butlast(x_1) -> butlast(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<=(x_1, x_2) -> <=(encArg(x_1), encArg(x_2)) encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: bsort(nil) -> nil bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y)))))) bubble(nil) -> nil bubble(.(x, nil)) -> .(x, nil) bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) last(nil) -> 0 last(.(x, nil)) -> x last(.(x, .(y, z))) -> last(.(y, z)) butlast(nil) -> nil butlast(.(x, nil)) -> nil butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z))) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(<=(x_1, x_2)) -> <=(encArg(x_1), encArg(x_2)) encArg(0) -> 0 encArg(cons_bsort(x_1)) -> bsort(encArg(x_1)) encArg(cons_bubble(x_1)) -> bubble(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_butlast(x_1)) -> butlast(encArg(x_1)) encode_bsort(x_1) -> bsort(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_last(x_1) -> last(encArg(x_1)) encode_bubble(x_1) -> bubble(encArg(x_1)) encode_butlast(x_1) -> butlast(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<=(x_1, x_2) -> <=(encArg(x_1), encArg(x_2)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: bsort(nil) -> nil bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y)))))) bubble(nil) -> nil bubble(.(x, nil)) -> .(x, nil) bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) last(nil) -> 0 last(.(x, nil)) -> x last(.(x, .(y, z))) -> last(.(y, z)) butlast(nil) -> nil butlast(.(x, nil)) -> nil butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z))) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(<=(x_1, x_2)) -> <=(encArg(x_1), encArg(x_2)) encArg(0) -> 0 encArg(cons_bsort(x_1)) -> bsort(encArg(x_1)) encArg(cons_bubble(x_1)) -> bubble(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_butlast(x_1)) -> butlast(encArg(x_1)) encode_bsort(x_1) -> bsort(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_last(x_1) -> last(encArg(x_1)) encode_bubble(x_1) -> bubble(encArg(x_1)) encode_butlast(x_1) -> butlast(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<=(x_1, x_2) -> <=(encArg(x_1), encArg(x_2)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: bsort(nil) -> nil bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y)))))) bubble(nil) -> nil bubble(.(x, nil)) -> .(x, nil) bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) last(nil) -> 0 last(.(x, nil)) -> x last(.(x, .(y, z))) -> last(.(y, z)) butlast(nil) -> nil butlast(.(x, nil)) -> nil butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z))) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(<=(x_1, x_2)) -> <=(encArg(x_1), encArg(x_2)) encArg(0) -> 0 encArg(cons_bsort(x_1)) -> bsort(encArg(x_1)) encArg(cons_bubble(x_1)) -> bubble(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_butlast(x_1)) -> butlast(encArg(x_1)) encode_bsort(x_1) -> bsort(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_last(x_1) -> last(encArg(x_1)) encode_bubble(x_1) -> bubble(encArg(x_1)) encode_butlast(x_1) -> butlast(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<=(x_1, x_2) -> <=(encArg(x_1), encArg(x_2)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (FINISHED) The following loop(s) give(s) rise to the lower bound EXP: The rewrite sequence bubble(.(x, .(y, z))) ->^+ if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1]. The pumping substitution is [z / .(y, z)]. The result substitution is [ ]. The rewrite sequence bubble(.(x, .(y, z))) ->^+ if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) gives rise to a decreasing loop by considering the right hand sides subterm at position [2,1]. The pumping substitution is [z / .(y, z)]. The result substitution is [x / y]. ---------------------------------------- (8) BOUNDS(EXP, INF)