/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 467 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) ++(x, nil) -> x ++(x, g(y, z)) -> g(++(x, y), z) null(nil) -> true null(g(x, y)) -> false mem(nil, y) -> false mem(g(x, y), z) -> or(=(y, z), mem(x, z)) mem(x, max(x)) -> not(null(x)) max(g(g(nil, x), y)) -> max'(x, y) max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nil) -> nil encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(=(x_1, x_2)) -> =(encArg(x_1), encArg(x_2)) encArg(not(x_1)) -> not(encArg(x_1)) encArg(max'(x_1, x_2)) -> max'(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_null(x_1)) -> null(encArg(x_1)) encArg(cons_mem(x_1, x_2)) -> mem(encArg(x_1), encArg(x_2)) encArg(cons_max(x_1)) -> max(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_null(x_1) -> null(encArg(x_1)) encode_true -> true encode_false -> false encode_mem(x_1, x_2) -> mem(encArg(x_1), encArg(x_2)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_=(x_1, x_2) -> =(encArg(x_1), encArg(x_2)) encode_max(x_1) -> max(encArg(x_1)) encode_not(x_1) -> not(encArg(x_1)) encode_max'(x_1, x_2) -> max'(encArg(x_1), encArg(x_2)) encode_u -> u ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) ++(x, nil) -> x ++(x, g(y, z)) -> g(++(x, y), z) null(nil) -> true null(g(x, y)) -> false mem(nil, y) -> false mem(g(x, y), z) -> or(=(y, z), mem(x, z)) mem(x, max(x)) -> not(null(x)) max(g(g(nil, x), y)) -> max'(x, y) max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(=(x_1, x_2)) -> =(encArg(x_1), encArg(x_2)) encArg(not(x_1)) -> not(encArg(x_1)) encArg(max'(x_1, x_2)) -> max'(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_null(x_1)) -> null(encArg(x_1)) encArg(cons_mem(x_1, x_2)) -> mem(encArg(x_1), encArg(x_2)) encArg(cons_max(x_1)) -> max(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_null(x_1) -> null(encArg(x_1)) encode_true -> true encode_false -> false encode_mem(x_1, x_2) -> mem(encArg(x_1), encArg(x_2)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_=(x_1, x_2) -> =(encArg(x_1), encArg(x_2)) encode_max(x_1) -> max(encArg(x_1)) encode_not(x_1) -> not(encArg(x_1)) encode_max'(x_1, x_2) -> max'(encArg(x_1), encArg(x_2)) encode_u -> u Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) ++(x, nil) -> x ++(x, g(y, z)) -> g(++(x, y), z) null(nil) -> true null(g(x, y)) -> false mem(nil, y) -> false mem(g(x, y), z) -> or(=(y, z), mem(x, z)) mem(x, max(x)) -> not(null(x)) max(g(g(nil, x), y)) -> max'(x, y) max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(=(x_1, x_2)) -> =(encArg(x_1), encArg(x_2)) encArg(not(x_1)) -> not(encArg(x_1)) encArg(max'(x_1, x_2)) -> max'(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_null(x_1)) -> null(encArg(x_1)) encArg(cons_mem(x_1, x_2)) -> mem(encArg(x_1), encArg(x_2)) encArg(cons_max(x_1)) -> max(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_null(x_1) -> null(encArg(x_1)) encode_true -> true encode_false -> false encode_mem(x_1, x_2) -> mem(encArg(x_1), encArg(x_2)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_=(x_1, x_2) -> =(encArg(x_1), encArg(x_2)) encode_max(x_1) -> max(encArg(x_1)) encode_not(x_1) -> not(encArg(x_1)) encode_max'(x_1, x_2) -> max'(encArg(x_1), encArg(x_2)) encode_u -> u Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) ++(x, nil) -> x ++(x, g(y, z)) -> g(++(x, y), z) null(nil) -> true null(g(x, y)) -> false mem(nil, y) -> false mem(g(x, y), z) -> or(=(y, z), mem(x, z)) mem(x, max(x)) -> not(null(x)) max(g(g(nil, x), y)) -> max'(x, y) max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(=(x_1, x_2)) -> =(encArg(x_1), encArg(x_2)) encArg(not(x_1)) -> not(encArg(x_1)) encArg(max'(x_1, x_2)) -> max'(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_null(x_1)) -> null(encArg(x_1)) encArg(cons_mem(x_1, x_2)) -> mem(encArg(x_1), encArg(x_2)) encArg(cons_max(x_1)) -> max(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_null(x_1) -> null(encArg(x_1)) encode_true -> true encode_false -> false encode_mem(x_1, x_2) -> mem(encArg(x_1), encArg(x_2)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_=(x_1, x_2) -> =(encArg(x_1), encArg(x_2)) encode_max(x_1) -> max(encArg(x_1)) encode_not(x_1) -> not(encArg(x_1)) encode_max'(x_1, x_2) -> max'(encArg(x_1), encArg(x_2)) encode_u -> u Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence ++(x, g(y, z)) ->^+ g(++(x, y), z) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [y / g(y, z)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) ++(x, nil) -> x ++(x, g(y, z)) -> g(++(x, y), z) null(nil) -> true null(g(x, y)) -> false mem(nil, y) -> false mem(g(x, y), z) -> or(=(y, z), mem(x, z)) mem(x, max(x)) -> not(null(x)) max(g(g(nil, x), y)) -> max'(x, y) max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(=(x_1, x_2)) -> =(encArg(x_1), encArg(x_2)) encArg(not(x_1)) -> not(encArg(x_1)) encArg(max'(x_1, x_2)) -> max'(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_null(x_1)) -> null(encArg(x_1)) encArg(cons_mem(x_1, x_2)) -> mem(encArg(x_1), encArg(x_2)) encArg(cons_max(x_1)) -> max(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_null(x_1) -> null(encArg(x_1)) encode_true -> true encode_false -> false encode_mem(x_1, x_2) -> mem(encArg(x_1), encArg(x_2)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_=(x_1, x_2) -> =(encArg(x_1), encArg(x_2)) encode_max(x_1) -> max(encArg(x_1)) encode_not(x_1) -> not(encArg(x_1)) encode_max'(x_1, x_2) -> max'(encArg(x_1), encArg(x_2)) encode_u -> u Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) ++(x, nil) -> x ++(x, g(y, z)) -> g(++(x, y), z) null(nil) -> true null(g(x, y)) -> false mem(nil, y) -> false mem(g(x, y), z) -> or(=(y, z), mem(x, z)) mem(x, max(x)) -> not(null(x)) max(g(g(nil, x), y)) -> max'(x, y) max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(=(x_1, x_2)) -> =(encArg(x_1), encArg(x_2)) encArg(not(x_1)) -> not(encArg(x_1)) encArg(max'(x_1, x_2)) -> max'(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_null(x_1)) -> null(encArg(x_1)) encArg(cons_mem(x_1, x_2)) -> mem(encArg(x_1), encArg(x_2)) encArg(cons_max(x_1)) -> max(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_null(x_1) -> null(encArg(x_1)) encode_true -> true encode_false -> false encode_mem(x_1, x_2) -> mem(encArg(x_1), encArg(x_2)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_=(x_1, x_2) -> =(encArg(x_1), encArg(x_2)) encode_max(x_1) -> max(encArg(x_1)) encode_not(x_1) -> not(encArg(x_1)) encode_max'(x_1, x_2) -> max'(encArg(x_1), encArg(x_2)) encode_u -> u Rewrite Strategy: INNERMOST