/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 193 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 5917 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 72 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(a) -> b f(c) -> d f(g(x, y)) -> g(f(x), f(y)) f(h(x, y)) -> g(h(y, f(x)), h(x, f(y))) g(x, x) -> h(e, x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(d) -> d encArg(h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(e) -> e encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_c -> c encode_d -> d encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e -> e ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(a) -> b f(c) -> d f(g(x, y)) -> g(f(x), f(y)) f(h(x, y)) -> g(h(y, f(x)), h(x, f(y))) g(x, x) -> h(e, x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(d) -> d encArg(h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(e) -> e encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_c -> c encode_d -> d encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e -> e Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(a) -> b f(c) -> d f(g(x, y)) -> g(f(x), f(y)) f(h(x, y)) -> g(h(y, f(x)), h(x, f(y))) g(x, x) -> h(e, x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(d) -> d encArg(h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(e) -> e encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_c -> c encode_d -> d encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e -> e Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(a) -> b f(c) -> d f(g(x, y)) -> g(f(x), f(y)) f(h(x, y)) -> g(h(y, f(x)), h(x, f(y))) g(x, x) -> h(e, x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(d) -> d encArg(h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(e) -> e encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_c -> c encode_d -> d encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e -> e Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: f(a) -> b f(c) -> d f(g(x, y)) -> g(f(x), f(y)) f(h(x, y)) -> g(h(y, f(x)), h(x, f(y))) g(x, x) -> h(e, x) encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(d) -> d encArg(h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(e) -> e encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_c -> c encode_d -> d encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e -> e Types: f :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g a :: a:b:c:d:h:e:cons_f:cons_g b :: a:b:c:d:h:e:cons_f:cons_g c :: a:b:c:d:h:e:cons_f:cons_g d :: a:b:c:d:h:e:cons_f:cons_g g :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g h :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g e :: a:b:c:d:h:e:cons_f:cons_g encArg :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g cons_f :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g cons_g :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_f :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_a :: a:b:c:d:h:e:cons_f:cons_g encode_b :: a:b:c:d:h:e:cons_f:cons_g encode_c :: a:b:c:d:h:e:cons_f:cons_g encode_d :: a:b:c:d:h:e:cons_f:cons_g encode_g :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_h :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_e :: a:b:c:d:h:e:cons_f:cons_g hole_a:b:c:d:h:e:cons_f:cons_g1_0 :: a:b:c:d:h:e:cons_f:cons_g gen_a:b:c:d:h:e:cons_f:cons_g2_0 :: Nat -> a:b:c:d:h:e:cons_f:cons_g ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: f(a) -> b f(c) -> d f(g(x, y)) -> g(f(x), f(y)) f(h(x, y)) -> g(h(y, f(x)), h(x, f(y))) g(x, x) -> h(e, x) encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(d) -> d encArg(h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(e) -> e encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_c -> c encode_d -> d encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e -> e Types: f :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g a :: a:b:c:d:h:e:cons_f:cons_g b :: a:b:c:d:h:e:cons_f:cons_g c :: a:b:c:d:h:e:cons_f:cons_g d :: a:b:c:d:h:e:cons_f:cons_g g :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g h :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g e :: a:b:c:d:h:e:cons_f:cons_g encArg :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g cons_f :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g cons_g :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_f :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_a :: a:b:c:d:h:e:cons_f:cons_g encode_b :: a:b:c:d:h:e:cons_f:cons_g encode_c :: a:b:c:d:h:e:cons_f:cons_g encode_d :: a:b:c:d:h:e:cons_f:cons_g encode_g :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_h :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_e :: a:b:c:d:h:e:cons_f:cons_g hole_a:b:c:d:h:e:cons_f:cons_g1_0 :: a:b:c:d:h:e:cons_f:cons_g gen_a:b:c:d:h:e:cons_f:cons_g2_0 :: Nat -> a:b:c:d:h:e:cons_f:cons_g Generator Equations: gen_a:b:c:d:h:e:cons_f:cons_g2_0(0) <=> a gen_a:b:c:d:h:e:cons_f:cons_g2_0(+(x, 1)) <=> h(a, gen_a:b:c:d:h:e:cons_f:cons_g2_0(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_a:b:c:d:h:e:cons_f:cons_g2_0(n4_0)) -> *3_0, rt in Omega(n4_0) Induction Base: f(gen_a:b:c:d:h:e:cons_f:cons_g2_0(0)) Induction Step: f(gen_a:b:c:d:h:e:cons_f:cons_g2_0(+(n4_0, 1))) ->_R^Omega(1) g(h(gen_a:b:c:d:h:e:cons_f:cons_g2_0(n4_0), f(a)), h(a, f(gen_a:b:c:d:h:e:cons_f:cons_g2_0(n4_0)))) ->_R^Omega(1) g(h(gen_a:b:c:d:h:e:cons_f:cons_g2_0(n4_0), b), h(a, f(gen_a:b:c:d:h:e:cons_f:cons_g2_0(n4_0)))) ->_IH g(h(gen_a:b:c:d:h:e:cons_f:cons_g2_0(n4_0), b), h(a, *3_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: f(a) -> b f(c) -> d f(g(x, y)) -> g(f(x), f(y)) f(h(x, y)) -> g(h(y, f(x)), h(x, f(y))) g(x, x) -> h(e, x) encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(d) -> d encArg(h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(e) -> e encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_c -> c encode_d -> d encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e -> e Types: f :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g a :: a:b:c:d:h:e:cons_f:cons_g b :: a:b:c:d:h:e:cons_f:cons_g c :: a:b:c:d:h:e:cons_f:cons_g d :: a:b:c:d:h:e:cons_f:cons_g g :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g h :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g e :: a:b:c:d:h:e:cons_f:cons_g encArg :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g cons_f :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g cons_g :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_f :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_a :: a:b:c:d:h:e:cons_f:cons_g encode_b :: a:b:c:d:h:e:cons_f:cons_g encode_c :: a:b:c:d:h:e:cons_f:cons_g encode_d :: a:b:c:d:h:e:cons_f:cons_g encode_g :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_h :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_e :: a:b:c:d:h:e:cons_f:cons_g hole_a:b:c:d:h:e:cons_f:cons_g1_0 :: a:b:c:d:h:e:cons_f:cons_g gen_a:b:c:d:h:e:cons_f:cons_g2_0 :: Nat -> a:b:c:d:h:e:cons_f:cons_g Generator Equations: gen_a:b:c:d:h:e:cons_f:cons_g2_0(0) <=> a gen_a:b:c:d:h:e:cons_f:cons_g2_0(+(x, 1)) <=> h(a, gen_a:b:c:d:h:e:cons_f:cons_g2_0(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: f(a) -> b f(c) -> d f(g(x, y)) -> g(f(x), f(y)) f(h(x, y)) -> g(h(y, f(x)), h(x, f(y))) g(x, x) -> h(e, x) encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(d) -> d encArg(h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(e) -> e encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_c -> c encode_d -> d encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e -> e Types: f :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g a :: a:b:c:d:h:e:cons_f:cons_g b :: a:b:c:d:h:e:cons_f:cons_g c :: a:b:c:d:h:e:cons_f:cons_g d :: a:b:c:d:h:e:cons_f:cons_g g :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g h :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g e :: a:b:c:d:h:e:cons_f:cons_g encArg :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g cons_f :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g cons_g :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_f :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_a :: a:b:c:d:h:e:cons_f:cons_g encode_b :: a:b:c:d:h:e:cons_f:cons_g encode_c :: a:b:c:d:h:e:cons_f:cons_g encode_d :: a:b:c:d:h:e:cons_f:cons_g encode_g :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_h :: a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g -> a:b:c:d:h:e:cons_f:cons_g encode_e :: a:b:c:d:h:e:cons_f:cons_g hole_a:b:c:d:h:e:cons_f:cons_g1_0 :: a:b:c:d:h:e:cons_f:cons_g gen_a:b:c:d:h:e:cons_f:cons_g2_0 :: Nat -> a:b:c:d:h:e:cons_f:cons_g Lemmas: f(gen_a:b:c:d:h:e:cons_f:cons_g2_0(n4_0)) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_a:b:c:d:h:e:cons_f:cons_g2_0(0) <=> a gen_a:b:c:d:h:e:cons_f:cons_g2_0(+(x, 1)) <=> h(a, gen_a:b:c:d:h:e:cons_f:cons_g2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_a:b:c:d:h:e:cons_f:cons_g2_0(n67866_0)) -> gen_a:b:c:d:h:e:cons_f:cons_g2_0(n67866_0), rt in Omega(0) Induction Base: encArg(gen_a:b:c:d:h:e:cons_f:cons_g2_0(0)) ->_R^Omega(0) a Induction Step: encArg(gen_a:b:c:d:h:e:cons_f:cons_g2_0(+(n67866_0, 1))) ->_R^Omega(0) h(encArg(a), encArg(gen_a:b:c:d:h:e:cons_f:cons_g2_0(n67866_0))) ->_R^Omega(0) h(a, encArg(gen_a:b:c:d:h:e:cons_f:cons_g2_0(n67866_0))) ->_IH h(a, gen_a:b:c:d:h:e:cons_f:cons_g2_0(c67867_0)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)