/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 183 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 258 ms] (12) proven lower bound (13) LowerBoundPropagationProof [FINISHED, 0 ms] (14) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(x, or(y, z)) -> or(and(x, y), and(x, z)) and(x, and(y, y)) -> and(x, y) or(or(x, y), and(y, z)) -> or(x, y) or(x, and(x, y)) -> x or(true, y) -> true or(x, false) -> x or(x, x) -> x or(x, or(y, y)) -> or(x, y) and(x, true) -> x and(false, y) -> false and(x, x) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(true) -> true encArg(false) -> false encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(x, or(y, z)) -> or(and(x, y), and(x, z)) and(x, and(y, y)) -> and(x, y) or(or(x, y), and(y, z)) -> or(x, y) or(x, and(x, y)) -> x or(true, y) -> true or(x, false) -> x or(x, x) -> x or(x, or(y, y)) -> or(x, y) and(x, true) -> x and(false, y) -> false and(x, x) -> x The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(x, or(y, z)) -> or(and(x, y), and(x, z)) and(x, and(y, y)) -> and(x, y) or(or(x, y), and(y, z)) -> or(x, y) or(x, and(x, y)) -> x or(true, y) -> true or(x, false) -> x or(x, x) -> x or(x, or(y, y)) -> or(x, y) and(x, true) -> x and(false, y) -> false and(x, x) -> x The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(x, or(y, z)) -> or(and(x, y), and(x, z)) and(x, and(y, y)) -> and(x, y) or(or(x, y), and(y, z)) -> or(x, y) or(x, and(x, y)) -> x or(true, y) -> true or(x, false) -> x or(x, x) -> x or(x, or(y, y)) -> or(x, y) and(x, true) -> x and(false, y) -> false and(x, x) -> x The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: and(x, or(y, z)) -> or(and(x, y), and(x, z)) and(x, and(y, y)) -> and(x, y) or(or(x, y), and(y, z)) -> or(x, y) or(x, and(x, y)) -> x or(true, y) -> true or(x, false) -> x or(x, x) -> x or(x, or(y, y)) -> or(x, y) and(x, true) -> x and(false, y) -> false and(x, x) -> x encArg(true) -> true encArg(false) -> false encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false Types: and :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or or :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or true :: true:false:cons_and:cons_or false :: true:false:cons_and:cons_or encArg :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or cons_and :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or cons_or :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or encode_and :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or encode_or :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or encode_true :: true:false:cons_and:cons_or encode_false :: true:false:cons_and:cons_or hole_true:false:cons_and:cons_or1_0 :: true:false:cons_and:cons_or gen_true:false:cons_and:cons_or2_0 :: Nat -> true:false:cons_and:cons_or ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: and, or, encArg They will be analysed ascendingly in the following order: or < and and < encArg or < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: and(x, or(y, z)) -> or(and(x, y), and(x, z)) and(x, and(y, y)) -> and(x, y) or(or(x, y), and(y, z)) -> or(x, y) or(x, and(x, y)) -> x or(true, y) -> true or(x, false) -> x or(x, x) -> x or(x, or(y, y)) -> or(x, y) and(x, true) -> x and(false, y) -> false and(x, x) -> x encArg(true) -> true encArg(false) -> false encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false Types: and :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or or :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or true :: true:false:cons_and:cons_or false :: true:false:cons_and:cons_or encArg :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or cons_and :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or cons_or :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or encode_and :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or encode_or :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or encode_true :: true:false:cons_and:cons_or encode_false :: true:false:cons_and:cons_or hole_true:false:cons_and:cons_or1_0 :: true:false:cons_and:cons_or gen_true:false:cons_and:cons_or2_0 :: Nat -> true:false:cons_and:cons_or Generator Equations: gen_true:false:cons_and:cons_or2_0(0) <=> true gen_true:false:cons_and:cons_or2_0(+(x, 1)) <=> cons_and(true, gen_true:false:cons_and:cons_or2_0(x)) The following defined symbols remain to be analysed: or, and, encArg They will be analysed ascendingly in the following order: or < and and < encArg or < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_true:false:cons_and:cons_or2_0(n127_0)) -> gen_true:false:cons_and:cons_or2_0(0), rt in Omega(n127_0) Induction Base: encArg(gen_true:false:cons_and:cons_or2_0(0)) ->_R^Omega(0) true Induction Step: encArg(gen_true:false:cons_and:cons_or2_0(+(n127_0, 1))) ->_R^Omega(0) and(encArg(true), encArg(gen_true:false:cons_and:cons_or2_0(n127_0))) ->_R^Omega(0) and(true, encArg(gen_true:false:cons_and:cons_or2_0(n127_0))) ->_IH and(true, gen_true:false:cons_and:cons_or2_0(0)) ->_R^Omega(1) true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: and(x, or(y, z)) -> or(and(x, y), and(x, z)) and(x, and(y, y)) -> and(x, y) or(or(x, y), and(y, z)) -> or(x, y) or(x, and(x, y)) -> x or(true, y) -> true or(x, false) -> x or(x, x) -> x or(x, or(y, y)) -> or(x, y) and(x, true) -> x and(false, y) -> false and(x, x) -> x encArg(true) -> true encArg(false) -> false encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false Types: and :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or or :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or true :: true:false:cons_and:cons_or false :: true:false:cons_and:cons_or encArg :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or cons_and :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or cons_or :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or encode_and :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or encode_or :: true:false:cons_and:cons_or -> true:false:cons_and:cons_or -> true:false:cons_and:cons_or encode_true :: true:false:cons_and:cons_or encode_false :: true:false:cons_and:cons_or hole_true:false:cons_and:cons_or1_0 :: true:false:cons_and:cons_or gen_true:false:cons_and:cons_or2_0 :: Nat -> true:false:cons_and:cons_or Generator Equations: gen_true:false:cons_and:cons_or2_0(0) <=> true gen_true:false:cons_and:cons_or2_0(+(x, 1)) <=> cons_and(true, gen_true:false:cons_and:cons_or2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (13) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (14) BOUNDS(n^1, INF)