/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 258 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [FINISHED, 0 ms] (8) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: merge(nil, y) -> y merge(x, nil) -> x merge(.(x, y), .(u, v)) -> if(<(x, u), .(x, merge(y, .(u, v))), .(u, merge(.(x, y), v))) ++(nil, y) -> y ++(.(x, y), z) -> .(x, ++(y, z)) if(true, x, y) -> x if(false, x, y) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(<(x_1, x_2)) -> <(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_merge(x_1, x_2)) -> merge(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_merge(x_1, x_2) -> merge(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<(x_1, x_2) -> <(encArg(x_1), encArg(x_2)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: merge(nil, y) -> y merge(x, nil) -> x merge(.(x, y), .(u, v)) -> if(<(x, u), .(x, merge(y, .(u, v))), .(u, merge(.(x, y), v))) ++(nil, y) -> y ++(.(x, y), z) -> .(x, ++(y, z)) if(true, x, y) -> x if(false, x, y) -> x The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(<(x_1, x_2)) -> <(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_merge(x_1, x_2)) -> merge(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_merge(x_1, x_2) -> merge(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<(x_1, x_2) -> <(encArg(x_1), encArg(x_2)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: merge(nil, y) -> y merge(x, nil) -> x merge(.(x, y), .(u, v)) -> if(<(x, u), .(x, merge(y, .(u, v))), .(u, merge(.(x, y), v))) ++(nil, y) -> y ++(.(x, y), z) -> .(x, ++(y, z)) if(true, x, y) -> x if(false, x, y) -> x The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(<(x_1, x_2)) -> <(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_merge(x_1, x_2)) -> merge(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_merge(x_1, x_2) -> merge(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<(x_1, x_2) -> <(encArg(x_1), encArg(x_2)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: merge(nil, y) -> y merge(x, nil) -> x merge(.(x, y), .(u, v)) -> if(<(x, u), .(x, merge(y, .(u, v))), .(u, merge(.(x, y), v))) ++(nil, y) -> y ++(.(x, y), z) -> .(x, ++(y, z)) if(true, x, y) -> x if(false, x, y) -> x The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(<(x_1, x_2)) -> <(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_merge(x_1, x_2)) -> merge(encArg(x_1), encArg(x_2)) encArg(cons_++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_merge(x_1, x_2) -> merge(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<(x_1, x_2) -> <(encArg(x_1), encArg(x_2)) encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (FINISHED) The following loop(s) give(s) rise to the lower bound EXP: The rewrite sequence merge(.(x, y), .(u, v)) ->^+ if(<(x, u), .(x, merge(y, .(u, v))), .(u, merge(.(x, y), v))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1]. The pumping substitution is [y / .(x, y)]. The result substitution is [ ]. The rewrite sequence merge(.(x, y), .(u, v)) ->^+ if(<(x, u), .(x, merge(y, .(u, v))), .(u, merge(.(x, y), v))) gives rise to a decreasing loop by considering the right hand sides subterm at position [2,1]. The pumping substitution is [v / .(u, v)]. The result substitution is [ ]. ---------------------------------------- (8) BOUNDS(EXP, INF)