/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 168 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 265 ms] (12) proven lower bound (13) LowerBoundPropagationProof [FINISHED, 0 ms] (14) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +(x, 0) -> x +(minus(x), x) -> 0 minus(0) -> 0 minus(minus(x)) -> x minus(+(x, y)) -> +(minus(y), minus(x)) *(x, 1) -> x *(x, 0) -> 0 *(x, +(y, z)) -> +(*(x, y), *(x, z)) *(x, minus(y)) -> minus(*(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_minus(x_1) -> minus(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_1 -> 1 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +(x, 0) -> x +(minus(x), x) -> 0 minus(0) -> 0 minus(minus(x)) -> x minus(+(x, y)) -> +(minus(y), minus(x)) *(x, 1) -> x *(x, 0) -> 0 *(x, +(y, z)) -> +(*(x, y), *(x, z)) *(x, minus(y)) -> minus(*(x, y)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_minus(x_1) -> minus(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_1 -> 1 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +(x, 0) -> x +(minus(x), x) -> 0 minus(0) -> 0 minus(minus(x)) -> x minus(+(x, y)) -> +(minus(y), minus(x)) *(x, 1) -> x *(x, 0) -> 0 *(x, +(y, z)) -> +(*(x, y), *(x, z)) *(x, minus(y)) -> minus(*(x, y)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_minus(x_1) -> minus(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_1 -> 1 Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +'(x, 0') -> x +'(minus(x), x) -> 0' minus(0') -> 0' minus(minus(x)) -> x minus(+'(x, y)) -> +'(minus(y), minus(x)) *'(x, 1') -> x *'(x, 0') -> 0' *'(x, +'(y, z)) -> +'(*'(x, y), *'(x, z)) *'(x, minus(y)) -> minus(*'(x, y)) The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(1') -> 1' encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encArg(cons_*(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_minus(x_1) -> minus(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_1 -> 1' Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: +'(x, 0') -> x +'(minus(x), x) -> 0' minus(0') -> 0' minus(minus(x)) -> x minus(+'(x, y)) -> +'(minus(y), minus(x)) *'(x, 1') -> x *'(x, 0') -> 0' *'(x, +'(y, z)) -> +'(*'(x, y), *'(x, z)) *'(x, minus(y)) -> minus(*'(x, y)) encArg(0') -> 0' encArg(1') -> 1' encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encArg(cons_*(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_minus(x_1) -> minus(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_1 -> 1' Types: +' :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* 0' :: 0':1':cons_+:cons_minus:cons_* minus :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* *' :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* 1' :: 0':1':cons_+:cons_minus:cons_* encArg :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* cons_+ :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* cons_minus :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* cons_* :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* encode_+ :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* encode_0 :: 0':1':cons_+:cons_minus:cons_* encode_minus :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* encode_* :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* encode_1 :: 0':1':cons_+:cons_minus:cons_* hole_0':1':cons_+:cons_minus:cons_*1_3 :: 0':1':cons_+:cons_minus:cons_* gen_0':1':cons_+:cons_minus:cons_*2_3 :: Nat -> 0':1':cons_+:cons_minus:cons_* ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus, *', encArg They will be analysed ascendingly in the following order: minus < *' minus < encArg *' < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: +'(x, 0') -> x +'(minus(x), x) -> 0' minus(0') -> 0' minus(minus(x)) -> x minus(+'(x, y)) -> +'(minus(y), minus(x)) *'(x, 1') -> x *'(x, 0') -> 0' *'(x, +'(y, z)) -> +'(*'(x, y), *'(x, z)) *'(x, minus(y)) -> minus(*'(x, y)) encArg(0') -> 0' encArg(1') -> 1' encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encArg(cons_*(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_minus(x_1) -> minus(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_1 -> 1' Types: +' :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* 0' :: 0':1':cons_+:cons_minus:cons_* minus :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* *' :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* 1' :: 0':1':cons_+:cons_minus:cons_* encArg :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* cons_+ :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* cons_minus :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* cons_* :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* encode_+ :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* encode_0 :: 0':1':cons_+:cons_minus:cons_* encode_minus :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* encode_* :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* encode_1 :: 0':1':cons_+:cons_minus:cons_* hole_0':1':cons_+:cons_minus:cons_*1_3 :: 0':1':cons_+:cons_minus:cons_* gen_0':1':cons_+:cons_minus:cons_*2_3 :: Nat -> 0':1':cons_+:cons_minus:cons_* Generator Equations: gen_0':1':cons_+:cons_minus:cons_*2_3(0) <=> 0' gen_0':1':cons_+:cons_minus:cons_*2_3(+(x, 1)) <=> cons_+(0', gen_0':1':cons_+:cons_minus:cons_*2_3(x)) The following defined symbols remain to be analysed: minus, *', encArg They will be analysed ascendingly in the following order: minus < *' minus < encArg *' < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':1':cons_+:cons_minus:cons_*2_3(n71_3)) -> gen_0':1':cons_+:cons_minus:cons_*2_3(0), rt in Omega(n71_3) Induction Base: encArg(gen_0':1':cons_+:cons_minus:cons_*2_3(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':1':cons_+:cons_minus:cons_*2_3(+(n71_3, 1))) ->_R^Omega(0) +'(encArg(0'), encArg(gen_0':1':cons_+:cons_minus:cons_*2_3(n71_3))) ->_R^Omega(0) +'(0', encArg(gen_0':1':cons_+:cons_minus:cons_*2_3(n71_3))) ->_IH +'(0', gen_0':1':cons_+:cons_minus:cons_*2_3(0)) ->_R^Omega(1) 0' We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: +'(x, 0') -> x +'(minus(x), x) -> 0' minus(0') -> 0' minus(minus(x)) -> x minus(+'(x, y)) -> +'(minus(y), minus(x)) *'(x, 1') -> x *'(x, 0') -> 0' *'(x, +'(y, z)) -> +'(*'(x, y), *'(x, z)) *'(x, minus(y)) -> minus(*'(x, y)) encArg(0') -> 0' encArg(1') -> 1' encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encArg(cons_*(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_minus(x_1) -> minus(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_1 -> 1' Types: +' :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* 0' :: 0':1':cons_+:cons_minus:cons_* minus :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* *' :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* 1' :: 0':1':cons_+:cons_minus:cons_* encArg :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* cons_+ :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* cons_minus :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* cons_* :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* encode_+ :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* encode_0 :: 0':1':cons_+:cons_minus:cons_* encode_minus :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* encode_* :: 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* -> 0':1':cons_+:cons_minus:cons_* encode_1 :: 0':1':cons_+:cons_minus:cons_* hole_0':1':cons_+:cons_minus:cons_*1_3 :: 0':1':cons_+:cons_minus:cons_* gen_0':1':cons_+:cons_minus:cons_*2_3 :: Nat -> 0':1':cons_+:cons_minus:cons_* Generator Equations: gen_0':1':cons_+:cons_minus:cons_*2_3(0) <=> 0' gen_0':1':cons_+:cons_minus:cons_*2_3(+(x, 1)) <=> cons_+(0', gen_0':1':cons_+:cons_minus:cons_*2_3(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (13) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (14) BOUNDS(n^1, INF)