/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 202 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 3 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection (13) DecreasingLoopProof [FINISHED, 0 ms] (14) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: f(0) -> 0 f(s(0)) -> s(0) f(s(s(x))) -> p(h(g(x))) g(0) -> pair(s(0), s(0)) g(s(x)) -> h(g(x)) h(x) -> pair(+(p(x), q(x)), p(x)) p(pair(x, y)) -> x q(pair(x, y)) -> y +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) f(s(s(x))) -> +(p(g(x)), q(g(x))) g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(pair(x_1, x_2)) -> pair(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_q(x_1)) -> q(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_pair(x_1, x_2) -> pair(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_q(x_1) -> q(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: f(0) -> 0 f(s(0)) -> s(0) f(s(s(x))) -> p(h(g(x))) g(0) -> pair(s(0), s(0)) g(s(x)) -> h(g(x)) h(x) -> pair(+(p(x), q(x)), p(x)) p(pair(x, y)) -> x q(pair(x, y)) -> y +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) f(s(s(x))) -> +(p(g(x)), q(g(x))) g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(pair(x_1, x_2)) -> pair(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_q(x_1)) -> q(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_pair(x_1, x_2) -> pair(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_q(x_1) -> q(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: f(0) -> 0 f(s(0)) -> s(0) f(s(s(x))) -> p(h(g(x))) g(0) -> pair(s(0), s(0)) g(s(x)) -> h(g(x)) h(x) -> pair(+(p(x), q(x)), p(x)) p(pair(x, y)) -> x q(pair(x, y)) -> y +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) f(s(s(x))) -> +(p(g(x)), q(g(x))) g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(pair(x_1, x_2)) -> pair(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_q(x_1)) -> q(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_pair(x_1, x_2) -> pair(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_q(x_1) -> q(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: f(0) -> 0 f(s(0)) -> s(0) f(s(s(x))) -> p(h(g(x))) g(0) -> pair(s(0), s(0)) g(s(x)) -> h(g(x)) h(x) -> pair(+(p(x), q(x)), p(x)) p(pair(x, y)) -> x q(pair(x, y)) -> y +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) f(s(s(x))) -> +(p(g(x)), q(g(x))) g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(pair(x_1, x_2)) -> pair(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_q(x_1)) -> q(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_pair(x_1, x_2) -> pair(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_q(x_1) -> q(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence +(x, s(y)) ->^+ s(+(x, y)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [y / s(y)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: f(0) -> 0 f(s(0)) -> s(0) f(s(s(x))) -> p(h(g(x))) g(0) -> pair(s(0), s(0)) g(s(x)) -> h(g(x)) h(x) -> pair(+(p(x), q(x)), p(x)) p(pair(x, y)) -> x q(pair(x, y)) -> y +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) f(s(s(x))) -> +(p(g(x)), q(g(x))) g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(pair(x_1, x_2)) -> pair(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_q(x_1)) -> q(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_pair(x_1, x_2) -> pair(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_q(x_1) -> q(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: f(0) -> 0 f(s(0)) -> s(0) f(s(s(x))) -> p(h(g(x))) g(0) -> pair(s(0), s(0)) g(s(x)) -> h(g(x)) h(x) -> pair(+(p(x), q(x)), p(x)) p(pair(x, y)) -> x q(pair(x, y)) -> y +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) f(s(s(x))) -> +(p(g(x)), q(g(x))) g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(pair(x_1, x_2)) -> pair(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_q(x_1)) -> q(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_pair(x_1, x_2) -> pair(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_q(x_1) -> q(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (13) DecreasingLoopProof (FINISHED) The following loop(s) give(s) rise to the lower bound EXP: The rewrite sequence g(s(x)) ->^+ pair(+(p(g(x)), q(g(x))), p(g(x))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,0]. The pumping substitution is [x / s(x)]. The result substitution is [ ]. The rewrite sequence g(s(x)) ->^+ pair(+(p(g(x)), q(g(x))), p(g(x))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,1,0]. The pumping substitution is [x / s(x)]. The result substitution is [ ]. ---------------------------------------- (14) BOUNDS(EXP, INF)