/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 177 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) CompleteCoflocoProof [FINISHED, 391 ms] (14) BOUNDS(1, n^2) (15) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (16) TRS for Loop Detection (17) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^1, INF) (22) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(x, a) -> x f(x, g(y)) -> f(g(x), y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(x, a) -> x f(x, g(y)) -> f(g(x), y) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(x, a) -> x f(x, g(y)) -> f(g(x), y) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(x, a) -> x [1] f(x, g(y)) -> f(g(x), y) [1] encArg(a) -> a [0] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_g(x_1) -> g(encArg(x_1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, a) -> x [1] f(x, g(y)) -> f(g(x), y) [1] encArg(a) -> a [0] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_g(x_1) -> g(encArg(x_1)) [0] The TRS has the following type information: f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f a :: a:g:cons_f g :: a:g:cons_f -> a:g:cons_f encArg :: a:g:cons_f -> a:g:cons_f cons_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_f :: a:g:cons_f -> a:g:cons_f -> a:g:cons_f encode_a :: a:g:cons_f encode_g :: a:g:cons_f -> a:g:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_g(v0) -> null_encode_g [0] f(v0, v1) -> null_f [0] And the following fresh constants: null_encArg, null_encode_f, null_encode_a, null_encode_g, null_f ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, a) -> x [1] f(x, g(y)) -> f(g(x), y) [1] encArg(a) -> a [0] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_g(x_1) -> g(encArg(x_1)) [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_g(v0) -> null_encode_g [0] f(v0, v1) -> null_f [0] The TRS has the following type information: f :: a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f -> a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f -> a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f a :: a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f g :: a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f -> a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f encArg :: a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f -> a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f cons_f :: a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f -> a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f -> a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f encode_f :: a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f -> a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f -> a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f encode_a :: a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f encode_g :: a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f -> a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f null_encArg :: a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f null_encode_f :: a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f null_encode_a :: a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f null_encode_g :: a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f null_f :: a:g:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_g:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: a => 0 null_encArg => 0 null_encode_f => 0 null_encode_a => 0 null_encode_g => 0 null_f => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_g(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 f(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 f(z, z') -{ 1 }-> f(1 + x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = x f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (13) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V),0,[f(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[encArg(V1, Out)],[V1 >= 0]). eq(start(V1, V),0,[fun(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[fun1(Out)],[]). eq(start(V1, V),0,[fun2(V1, Out)],[V1 >= 0]). eq(f(V1, V, Out),1,[],[Out = V2,V2 >= 0,V1 = V2,V = 0]). eq(f(V1, V, Out),1,[f(1 + V3, V4, Ret)],[Out = Ret,V = 1 + V4,V3 >= 0,V4 >= 0,V1 = V3]). eq(encArg(V1, Out),0,[],[Out = 0,V1 = 0]). eq(encArg(V1, Out),0,[encArg(V5, Ret1)],[Out = 1 + Ret1,V1 = 1 + V5,V5 >= 0]). eq(encArg(V1, Out),0,[encArg(V6, Ret0),encArg(V7, Ret11),f(Ret0, Ret11, Ret2)],[Out = Ret2,V6 >= 0,V1 = 1 + V6 + V7,V7 >= 0]). eq(fun(V1, V, Out),0,[encArg(V8, Ret01),encArg(V9, Ret12),f(Ret01, Ret12, Ret3)],[Out = Ret3,V8 >= 0,V9 >= 0,V1 = V8,V = V9]). eq(fun1(Out),0,[],[Out = 0]). eq(fun2(V1, Out),0,[encArg(V10, Ret13)],[Out = 1 + Ret13,V10 >= 0,V1 = V10]). eq(encArg(V1, Out),0,[],[Out = 0,V11 >= 0,V1 = V11]). eq(fun(V1, V, Out),0,[],[Out = 0,V13 >= 0,V12 >= 0,V1 = V13,V = V12]). eq(fun2(V1, Out),0,[],[Out = 0,V14 >= 0,V1 = V14]). eq(f(V1, V, Out),0,[],[Out = 0,V15 >= 0,V16 >= 0,V1 = V15,V = V16]). input_output_vars(f(V1,V,Out),[V1,V],[Out]). input_output_vars(encArg(V1,Out),[V1],[Out]). input_output_vars(fun(V1,V,Out),[V1,V],[Out]). input_output_vars(fun1(Out),[],[Out]). input_output_vars(fun2(V1,Out),[V1],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [f/3] 1. recursive [non_tail,multiple] : [encArg/2] 2. non_recursive : [fun/3] 3. non_recursive : [fun1/1] 4. non_recursive : [fun2/2] 5. non_recursive : [start/2] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into f/3 1. SCC is partially evaluated into encArg/2 2. SCC is partially evaluated into fun/3 3. SCC is completely evaluated into other SCCs 4. SCC is partially evaluated into fun2/2 5. SCC is partially evaluated into start/2 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations f/3 * CE 8 is refined into CE [16] * CE 6 is refined into CE [17] * CE 7 is refined into CE [18] ### Cost equations --> "Loop" of f/3 * CEs [18] --> Loop 10 * CEs [16] --> Loop 11 * CEs [17] --> Loop 12 ### Ranking functions of CR f(V1,V,Out) * RF of phase [10]: [V] #### Partial ranking functions of CR f(V1,V,Out) * Partial RF of phase [10]: - RF of loop [10:1]: V ### Specialization of cost equations encArg/2 * CE 9 is refined into CE [19] * CE 11 is refined into CE [20,21,22] * CE 10 is refined into CE [23] ### Cost equations --> "Loop" of encArg/2 * CEs [23] --> Loop 13 * CEs [22] --> Loop 14 * CEs [20] --> Loop 15 * CEs [21] --> Loop 16 * CEs [19] --> Loop 17 ### Ranking functions of CR encArg(V1,Out) * RF of phase [13,14,15,16]: [V1] #### Partial ranking functions of CR encArg(V1,Out) * Partial RF of phase [13,14,15,16]: - RF of loop [13:1,14:1,14:2,15:1,15:2,16:1,16:2]: V1 ### Specialization of cost equations fun/3 * CE 12 is refined into CE [24,25,26,27,28,29,30,31,32,33] * CE 13 is refined into CE [34] ### Cost equations --> "Loop" of fun/3 * CEs [33] --> Loop 18 * CEs [29,31] --> Loop 19 * CEs [28] --> Loop 20 * CEs [24,25,26,27,30,32,34] --> Loop 21 ### Ranking functions of CR fun(V1,V,Out) #### Partial ranking functions of CR fun(V1,V,Out) ### Specialization of cost equations fun2/2 * CE 14 is refined into CE [35,36] * CE 15 is refined into CE [37] ### Cost equations --> "Loop" of fun2/2 * CEs [36] --> Loop 22 * CEs [35] --> Loop 23 * CEs [37] --> Loop 24 ### Ranking functions of CR fun2(V1,Out) #### Partial ranking functions of CR fun2(V1,Out) ### Specialization of cost equations start/2 * CE 1 is refined into CE [38,39,40] * CE 2 is refined into CE [41,42] * CE 3 is refined into CE [43,44,45,46] * CE 4 is refined into CE [47] * CE 5 is refined into CE [48,49,50] ### Cost equations --> "Loop" of start/2 * CEs [38,39,40,41,42,43,44,45,46,47,48,49,50] --> Loop 25 ### Ranking functions of CR start(V1,V) #### Partial ranking functions of CR start(V1,V) Computing Bounds ===================================== #### Cost of chains of f(V1,V,Out): * Chain [[10],12]: 1*it(10)+1 Such that:it(10) =< V with precondition: [V+V1=Out,V1>=0,V>=1] * Chain [[10],11]: 1*it(10)+0 Such that:it(10) =< V with precondition: [Out=0,V1>=0,V>=1] * Chain [12]: 1 with precondition: [V=0,V1=Out,V1>=0] * Chain [11]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of encArg(V1,Out): * Chain [17]: 0 with precondition: [Out=0,V1>=0] * Chain [multiple([13,14,15,16],[[17]])]: 1*it(14)+1*it(15)+1*s(6)+1*s(7)+0 Such that:aux(7) =< V1 aux(8) =< 2/3*V1 it(13) =< aux(7) it(14) =< aux(7) it(15) =< aux(7) it(14) =< aux(8) aux(3) =< aux(7) s(7) =< it(13)*aux(3) s(6) =< it(14)*aux(7) with precondition: [V1>=1,Out>=0,V1>=Out] #### Cost of chains of fun(V1,V,Out): * Chain [21]: 3*s(12)+5*s(13)+3*s(15)+3*s(16)+2*s(29)+2*s(30)+2*s(32)+2*s(33)+1 Such that:aux(11) =< V1 aux(12) =< 2/3*V1 aux(13) =< V aux(14) =< 2/3*V s(29) =< aux(11) s(30) =< aux(11) s(29) =< aux(12) s(31) =< aux(11) s(32) =< aux(11)*s(31) s(33) =< s(29)*aux(11) s(13) =< aux(13) s(12) =< aux(13) s(12) =< aux(14) s(14) =< aux(13) s(15) =< aux(13)*s(14) s(16) =< s(12)*aux(13) with precondition: [Out=0,V1>=0,V>=0] * Chain [20]: 1*s(55)+2*s(56)+1*s(58)+1*s(59)+1 Such that:s(53) =< 2/3*V aux(15) =< V s(56) =< aux(15) s(55) =< aux(15) s(55) =< s(53) s(57) =< aux(15) s(58) =< aux(15)*s(57) s(59) =< s(55)*aux(15) with precondition: [V1>=0,Out>=1,V>=Out] * Chain [19]: 2*s(64)+2*s(65)+2*s(67)+2*s(68)+1*s(80)+1*s(81)+1*s(83)+1*s(84)+1 Such that:s(77) =< V s(78) =< 2/3*V aux(16) =< V1 aux(17) =< 2/3*V1 s(64) =< aux(16) s(65) =< aux(16) s(64) =< aux(17) s(66) =< aux(16) s(67) =< aux(16)*s(66) s(68) =< s(64)*aux(16) s(80) =< s(77) s(81) =< s(77) s(80) =< s(78) s(82) =< s(77) s(83) =< s(77)*s(82) s(84) =< s(80)*s(77) with precondition: [V1>=1,V>=0,Out>=0,V1>=Out] * Chain [18]: 1*s(88)+1*s(89)+1*s(91)+1*s(92)+1*s(96)+2*s(97)+1*s(99)+1*s(100)+1 Such that:s(85) =< V1 s(86) =< 2/3*V1 s(94) =< 2/3*V aux(18) =< V s(97) =< aux(18) s(96) =< aux(18) s(96) =< s(94) s(98) =< aux(18) s(99) =< aux(18)*s(98) s(100) =< s(96)*aux(18) s(88) =< s(85) s(89) =< s(85) s(88) =< s(86) s(90) =< s(85) s(91) =< s(85)*s(90) s(92) =< s(88)*s(85) with precondition: [V1>=1,V>=1,Out>=1,V+V1>=Out] #### Cost of chains of fun2(V1,Out): * Chain [24]: 0 with precondition: [Out=0,V1>=0] * Chain [23]: 0 with precondition: [Out=1,V1>=0] * Chain [22]: 1*s(105)+1*s(106)+1*s(108)+1*s(109)+0 Such that:s(102) =< V1 s(103) =< 2/3*V1 s(105) =< s(102) s(106) =< s(102) s(105) =< s(103) s(107) =< s(102) s(108) =< s(102)*s(107) s(109) =< s(105)*s(102) with precondition: [V1>=1,Out>=1,V1+1>=Out] #### Cost of chains of start(V1,V): * Chain [25]: 12*s(110)+7*s(115)+7*s(116)+7*s(118)+7*s(119)+6*s(130)+6*s(132)+6*s(133)+1 Such that:aux(19) =< V1 aux(20) =< 2/3*V1 aux(21) =< V aux(22) =< 2/3*V s(110) =< aux(21) s(115) =< aux(19) s(116) =< aux(19) s(115) =< aux(20) s(117) =< aux(19) s(118) =< aux(19)*s(117) s(119) =< s(115)*aux(19) s(130) =< aux(21) s(130) =< aux(22) s(131) =< aux(21) s(132) =< aux(21)*s(131) s(133) =< s(130)*aux(21) with precondition: [] Closed-form bounds of start(V1,V): ------------------------------------- * Chain [25] with precondition: [] - Upper bound: nat(V1)*14+1+nat(V1)*14*nat(V1)+nat(V)*18+nat(V)*12*nat(V) - Complexity: n^2 ### Maximum cost of start(V1,V): nat(V1)*14+1+nat(V1)*14*nat(V1)+nat(V)*18+nat(V)*12*nat(V) Asymptotic class: n^2 * Total analysis performed in 310 ms. ---------------------------------------- (14) BOUNDS(1, n^2) ---------------------------------------- (15) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(x, a) -> x f(x, g(y)) -> f(g(x), y) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (17) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(x, g(y)) ->^+ f(g(x), y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [y / g(y)]. The result substitution is [x / g(x)]. ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(x, a) -> x f(x, g(y)) -> f(g(x), y) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^1, INF) ---------------------------------------- (22) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(x, a) -> x f(x, g(y)) -> f(g(x), y) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST