/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 181 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 5 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 95 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 4 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 47 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 579 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 188 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 107 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 1 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 416 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 181 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 212 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 192 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) FinalProof [FINISHED, 0 ms] (62) BOUNDS(1, n^2) (63) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (64) TRS for Loop Detection (65) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (66) BEST (67) proven lower bound (68) LowerBoundPropagationProof [FINISHED, 0 ms] (69) BOUNDS(n^1, INF) (70) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: merge(x, nil) -> x merge(nil, y) -> y merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v))) merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nil) -> nil encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(v) -> v encArg(cons_merge(x_1, x_2)) -> merge(encArg(x_1), encArg(x_2)) encode_merge(x_1, x_2) -> merge(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_u -> u encode_v -> v ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: merge(x, nil) -> x merge(nil, y) -> y merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v))) merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(v) -> v encArg(cons_merge(x_1, x_2)) -> merge(encArg(x_1), encArg(x_2)) encode_merge(x_1, x_2) -> merge(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_u -> u encode_v -> v Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: merge(x, nil) -> x merge(nil, y) -> y merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v))) merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(v) -> v encArg(cons_merge(x_1, x_2)) -> merge(encArg(x_1), encArg(x_2)) encode_merge(x_1, x_2) -> merge(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_u -> u encode_v -> v Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: merge(x, nil) -> x [1] merge(nil, y) -> y [1] merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v))) [1] merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v)) [1] encArg(nil) -> nil [0] encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) [0] encArg(u) -> u [0] encArg(v) -> v [0] encArg(cons_merge(x_1, x_2)) -> merge(encArg(x_1), encArg(x_2)) [0] encode_merge(x_1, x_2) -> merge(encArg(x_1), encArg(x_2)) [0] encode_nil -> nil [0] encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) [0] encode_u -> u [0] encode_v -> v [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: merge(x, nil) -> x [1] merge(nil, y) -> y [1] merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v))) [1] merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v)) [1] encArg(nil) -> nil [0] encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) [0] encArg(u) -> u [0] encArg(v) -> v [0] encArg(cons_merge(x_1, x_2)) -> merge(encArg(x_1), encArg(x_2)) [0] encode_merge(x_1, x_2) -> merge(encArg(x_1), encArg(x_2)) [0] encode_nil -> nil [0] encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) [0] encode_u -> u [0] encode_v -> v [0] The TRS has the following type information: merge :: nil:++:u:v:cons_merge -> nil:++:u:v:cons_merge -> nil:++:u:v:cons_merge nil :: nil:++:u:v:cons_merge ++ :: nil:++:u:v:cons_merge -> nil:++:u:v:cons_merge -> nil:++:u:v:cons_merge u :: nil:++:u:v:cons_merge v :: nil:++:u:v:cons_merge encArg :: nil:++:u:v:cons_merge -> nil:++:u:v:cons_merge cons_merge :: nil:++:u:v:cons_merge -> nil:++:u:v:cons_merge -> nil:++:u:v:cons_merge encode_merge :: nil:++:u:v:cons_merge -> nil:++:u:v:cons_merge -> nil:++:u:v:cons_merge encode_nil :: nil:++:u:v:cons_merge encode_++ :: nil:++:u:v:cons_merge -> nil:++:u:v:cons_merge -> nil:++:u:v:cons_merge encode_u :: nil:++:u:v:cons_merge encode_v :: nil:++:u:v:cons_merge Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: merge_2 encArg_1 encode_merge_2 encode_nil encode_++_2 encode_u encode_v Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_merge(v0, v1) -> null_encode_merge [0] encode_nil -> null_encode_nil [0] encode_++(v0, v1) -> null_encode_++ [0] encode_u -> null_encode_u [0] encode_v -> null_encode_v [0] merge(v0, v1) -> null_merge [0] And the following fresh constants: null_encArg, null_encode_merge, null_encode_nil, null_encode_++, null_encode_u, null_encode_v, null_merge ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: merge(x, nil) -> x [1] merge(nil, y) -> y [1] merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v))) [1] merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v)) [1] encArg(nil) -> nil [0] encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) [0] encArg(u) -> u [0] encArg(v) -> v [0] encArg(cons_merge(x_1, x_2)) -> merge(encArg(x_1), encArg(x_2)) [0] encode_merge(x_1, x_2) -> merge(encArg(x_1), encArg(x_2)) [0] encode_nil -> nil [0] encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) [0] encode_u -> u [0] encode_v -> v [0] encArg(v0) -> null_encArg [0] encode_merge(v0, v1) -> null_encode_merge [0] encode_nil -> null_encode_nil [0] encode_++(v0, v1) -> null_encode_++ [0] encode_u -> null_encode_u [0] encode_v -> null_encode_v [0] merge(v0, v1) -> null_merge [0] The TRS has the following type information: merge :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge nil :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge ++ :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge u :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge v :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge encArg :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge cons_merge :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge encode_merge :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge encode_nil :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge encode_++ :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge encode_u :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge encode_v :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge null_encArg :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge null_encode_merge :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge null_encode_nil :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge null_encode_++ :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge null_encode_u :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge null_encode_v :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge null_merge :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: merge(x, nil) -> x [1] merge(nil, y) -> y [1] merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v))) [1] merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v)) [1] encArg(nil) -> nil [0] encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) [0] encArg(u) -> u [0] encArg(v) -> v [0] encArg(cons_merge(x_1, x_2)) -> merge(encArg(x_1), encArg(x_2)) [0] encode_merge(x_1, x_2) -> merge(encArg(x_1), encArg(x_2)) [0] encode_nil -> nil [0] encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) [0] encode_u -> u [0] encode_v -> v [0] encArg(v0) -> null_encArg [0] encode_merge(v0, v1) -> null_encode_merge [0] encode_nil -> null_encode_nil [0] encode_++(v0, v1) -> null_encode_++ [0] encode_u -> null_encode_u [0] encode_v -> null_encode_v [0] merge(v0, v1) -> null_merge [0] The TRS has the following type information: merge :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge nil :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge ++ :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge u :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge v :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge encArg :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge cons_merge :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge encode_merge :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge encode_nil :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge encode_++ :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge -> nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge encode_u :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge encode_v :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge null_encArg :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge null_encode_merge :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge null_encode_nil :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge null_encode_++ :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge null_encode_u :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge null_encode_v :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge null_merge :: nil:++:u:v:cons_merge:null_encArg:null_encode_merge:null_encode_nil:null_encode_++:null_encode_u:null_encode_v:null_merge Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: nil => 0 u => 1 v => 2 null_encArg => 0 null_encode_merge => 0 null_encode_nil => 0 null_encode_++ => 0 null_encode_u => 0 null_encode_v => 0 null_merge => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_++(z, z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_merge(z, z') -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_merge(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 merge(z, z') -{ 1 }-> y :|: y >= 0, z = 0, z' = y merge(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 merge(z, z') -{ 1 }-> 1 + x + merge(y, 1 + 1 + 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 1 }-> 1 + 1 + merge(1 + x + y, 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 1 }-> 1 + x + merge(y, 1 + 1 + 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 1 }-> 1 + 1 + merge(1 + x + y, 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_v } { encode_nil } { merge } { encode_u } { encArg } { encode_++ } { encode_merge } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 1 }-> 1 + x + merge(y, 1 + 1 + 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 1 }-> 1 + 1 + merge(1 + x + y, 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encode_v}, {encode_nil}, {merge}, {encode_u}, {encArg}, {encode_++}, {encode_merge} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 1 }-> 1 + x + merge(y, 1 + 1 + 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 1 }-> 1 + 1 + merge(1 + x + y, 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encode_v}, {encode_nil}, {merge}, {encode_u}, {encArg}, {encode_++}, {encode_merge} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_v after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 1 }-> 1 + x + merge(y, 1 + 1 + 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 1 }-> 1 + 1 + merge(1 + x + y, 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encode_v}, {encode_nil}, {merge}, {encode_u}, {encArg}, {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: ?, size: O(1) [2] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_v after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 1 }-> 1 + x + merge(y, 1 + 1 + 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 1 }-> 1 + 1 + merge(1 + x + y, 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encode_nil}, {merge}, {encode_u}, {encArg}, {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 1 }-> 1 + x + merge(y, 1 + 1 + 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 1 }-> 1 + 1 + merge(1 + x + y, 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encode_nil}, {merge}, {encode_u}, {encArg}, {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_nil after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 1 }-> 1 + x + merge(y, 1 + 1 + 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 1 }-> 1 + 1 + merge(1 + x + y, 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encode_nil}, {merge}, {encode_u}, {encArg}, {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: ?, size: O(1) [0] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_nil after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 1 }-> 1 + x + merge(y, 1 + 1 + 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 1 }-> 1 + 1 + merge(1 + x + y, 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {merge}, {encode_u}, {encArg}, {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 1 }-> 1 + x + merge(y, 1 + 1 + 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 1 }-> 1 + 1 + merge(1 + x + y, 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {merge}, {encode_u}, {encArg}, {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: merge after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 1 }-> 1 + x + merge(y, 1 + 1 + 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 1 }-> 1 + 1 + merge(1 + x + y, 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {merge}, {encode_u}, {encArg}, {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] merge: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: merge after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 1 }-> 1 + x + merge(y, 1 + 1 + 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 1 }-> 1 + 1 + merge(1 + x + y, 2) :|: z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encode_u}, {encArg}, {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] merge: runtime: O(n^1) [2 + z], size: O(n^1) [z + z'] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 3 + y }-> 1 + x + s :|: s >= 0, s <= y + (1 + 1 + 2), z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 4 + x + y }-> 1 + 1 + s' :|: s' >= 0, s' <= 1 + x + y + 2, z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encode_u}, {encArg}, {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] merge: runtime: O(n^1) [2 + z], size: O(n^1) [z + z'] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_u after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 3 + y }-> 1 + x + s :|: s >= 0, s <= y + (1 + 1 + 2), z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 4 + x + y }-> 1 + 1 + s' :|: s' >= 0, s' <= 1 + x + y + 2, z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encode_u}, {encArg}, {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] merge: runtime: O(n^1) [2 + z], size: O(n^1) [z + z'] encode_u: runtime: ?, size: O(1) [1] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_u after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 3 + y }-> 1 + x + s :|: s >= 0, s <= y + (1 + 1 + 2), z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 4 + x + y }-> 1 + 1 + s' :|: s' >= 0, s' <= 1 + x + y + 2, z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encArg}, {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] merge: runtime: O(n^1) [2 + z], size: O(n^1) [z + z'] encode_u: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 3 + y }-> 1 + x + s :|: s >= 0, s <= y + (1 + 1 + 2), z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 4 + x + y }-> 1 + 1 + s' :|: s' >= 0, s' <= 1 + x + y + 2, z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encArg}, {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] merge: runtime: O(n^1) [2 + z], size: O(n^1) [z + z'] encode_u: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 2*z ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 3 + y }-> 1 + x + s :|: s >= 0, s <= y + (1 + 1 + 2), z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 4 + x + y }-> 1 + 1 + s' :|: s' >= 0, s' <= 1 + x + y + 2, z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encArg}, {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] merge: runtime: O(n^1) [2 + z], size: O(n^1) [z + z'] encode_u: runtime: O(1) [0], size: O(1) [1] encArg: runtime: ?, size: O(n^1) [2 + 2*z] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2*z + 2*z^2 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> merge(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> merge(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 3 + y }-> 1 + x + s :|: s >= 0, s <= y + (1 + 1 + 2), z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 4 + x + y }-> 1 + 1 + s' :|: s' >= 0, s' <= 1 + x + y + 2, z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] merge: runtime: O(n^1) [2 + z], size: O(n^1) [z + z'] encode_u: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2*z + 2*z^2], size: O(n^1) [2 + 2*z] ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s2 + 2*x_1 + 2*x_1^2 + 2*x_2 + 2*x_2^2 }-> s4 :|: s2 >= 0, s2 <= 2 * x_1 + 2, s3 >= 0, s3 <= 2 * x_2 + 2, s4 >= 0, s4 <= s2 + s3, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 2*x_1 + 2*x_1^2 + 2*x_2 + 2*x_2^2 }-> 1 + s'' + s1 :|: s'' >= 0, s'' <= 2 * x_1 + 2, s1 >= 0, s1 <= 2 * x_2 + 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 2*z + 2*z^2 + 2*z' + 2*z'^2 }-> 1 + s8 + s9 :|: s8 >= 0, s8 <= 2 * z + 2, s9 >= 0, s9 <= 2 * z' + 2, z >= 0, z' >= 0 encode_merge(z, z') -{ 2 + s5 + 2*z + 2*z^2 + 2*z' + 2*z'^2 }-> s7 :|: s5 >= 0, s5 <= 2 * z + 2, s6 >= 0, s6 <= 2 * z' + 2, s7 >= 0, s7 <= s5 + s6, z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 3 + y }-> 1 + x + s :|: s >= 0, s <= y + (1 + 1 + 2), z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 4 + x + y }-> 1 + 1 + s' :|: s' >= 0, s' <= 1 + x + y + 2, z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] merge: runtime: O(n^1) [2 + z], size: O(n^1) [z + z'] encode_u: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2*z + 2*z^2], size: O(n^1) [2 + 2*z] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_++ after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 5 + 2*z + 2*z' ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s2 + 2*x_1 + 2*x_1^2 + 2*x_2 + 2*x_2^2 }-> s4 :|: s2 >= 0, s2 <= 2 * x_1 + 2, s3 >= 0, s3 <= 2 * x_2 + 2, s4 >= 0, s4 <= s2 + s3, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 2*x_1 + 2*x_1^2 + 2*x_2 + 2*x_2^2 }-> 1 + s'' + s1 :|: s'' >= 0, s'' <= 2 * x_1 + 2, s1 >= 0, s1 <= 2 * x_2 + 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 2*z + 2*z^2 + 2*z' + 2*z'^2 }-> 1 + s8 + s9 :|: s8 >= 0, s8 <= 2 * z + 2, s9 >= 0, s9 <= 2 * z' + 2, z >= 0, z' >= 0 encode_merge(z, z') -{ 2 + s5 + 2*z + 2*z^2 + 2*z' + 2*z'^2 }-> s7 :|: s5 >= 0, s5 <= 2 * z + 2, s6 >= 0, s6 <= 2 * z' + 2, s7 >= 0, s7 <= s5 + s6, z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 3 + y }-> 1 + x + s :|: s >= 0, s <= y + (1 + 1 + 2), z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 4 + x + y }-> 1 + 1 + s' :|: s' >= 0, s' <= 1 + x + y + 2, z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encode_++}, {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] merge: runtime: O(n^1) [2 + z], size: O(n^1) [z + z'] encode_u: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2*z + 2*z^2], size: O(n^1) [2 + 2*z] encode_++: runtime: ?, size: O(n^1) [5 + 2*z + 2*z'] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_++ after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2*z + 2*z^2 + 2*z' + 2*z'^2 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s2 + 2*x_1 + 2*x_1^2 + 2*x_2 + 2*x_2^2 }-> s4 :|: s2 >= 0, s2 <= 2 * x_1 + 2, s3 >= 0, s3 <= 2 * x_2 + 2, s4 >= 0, s4 <= s2 + s3, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 2*x_1 + 2*x_1^2 + 2*x_2 + 2*x_2^2 }-> 1 + s'' + s1 :|: s'' >= 0, s'' <= 2 * x_1 + 2, s1 >= 0, s1 <= 2 * x_2 + 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 2*z + 2*z^2 + 2*z' + 2*z'^2 }-> 1 + s8 + s9 :|: s8 >= 0, s8 <= 2 * z + 2, s9 >= 0, s9 <= 2 * z' + 2, z >= 0, z' >= 0 encode_merge(z, z') -{ 2 + s5 + 2*z + 2*z^2 + 2*z' + 2*z'^2 }-> s7 :|: s5 >= 0, s5 <= 2 * z + 2, s6 >= 0, s6 <= 2 * z' + 2, s7 >= 0, s7 <= s5 + s6, z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 3 + y }-> 1 + x + s :|: s >= 0, s <= y + (1 + 1 + 2), z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 4 + x + y }-> 1 + 1 + s' :|: s' >= 0, s' <= 1 + x + y + 2, z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] merge: runtime: O(n^1) [2 + z], size: O(n^1) [z + z'] encode_u: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2*z + 2*z^2], size: O(n^1) [2 + 2*z] encode_++: runtime: O(n^2) [2*z + 2*z^2 + 2*z' + 2*z'^2], size: O(n^1) [5 + 2*z + 2*z'] ---------------------------------------- (55) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s2 + 2*x_1 + 2*x_1^2 + 2*x_2 + 2*x_2^2 }-> s4 :|: s2 >= 0, s2 <= 2 * x_1 + 2, s3 >= 0, s3 <= 2 * x_2 + 2, s4 >= 0, s4 <= s2 + s3, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 2*x_1 + 2*x_1^2 + 2*x_2 + 2*x_2^2 }-> 1 + s'' + s1 :|: s'' >= 0, s'' <= 2 * x_1 + 2, s1 >= 0, s1 <= 2 * x_2 + 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 2*z + 2*z^2 + 2*z' + 2*z'^2 }-> 1 + s8 + s9 :|: s8 >= 0, s8 <= 2 * z + 2, s9 >= 0, s9 <= 2 * z' + 2, z >= 0, z' >= 0 encode_merge(z, z') -{ 2 + s5 + 2*z + 2*z^2 + 2*z' + 2*z'^2 }-> s7 :|: s5 >= 0, s5 <= 2 * z + 2, s6 >= 0, s6 <= 2 * z' + 2, s7 >= 0, s7 <= s5 + s6, z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 3 + y }-> 1 + x + s :|: s >= 0, s <= y + (1 + 1 + 2), z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 4 + x + y }-> 1 + 1 + s' :|: s' >= 0, s' <= 1 + x + y + 2, z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] merge: runtime: O(n^1) [2 + z], size: O(n^1) [z + z'] encode_u: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2*z + 2*z^2], size: O(n^1) [2 + 2*z] encode_++: runtime: O(n^2) [2*z + 2*z^2 + 2*z' + 2*z'^2], size: O(n^1) [5 + 2*z + 2*z'] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_merge after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + 2*z + 2*z' ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s2 + 2*x_1 + 2*x_1^2 + 2*x_2 + 2*x_2^2 }-> s4 :|: s2 >= 0, s2 <= 2 * x_1 + 2, s3 >= 0, s3 <= 2 * x_2 + 2, s4 >= 0, s4 <= s2 + s3, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 2*x_1 + 2*x_1^2 + 2*x_2 + 2*x_2^2 }-> 1 + s'' + s1 :|: s'' >= 0, s'' <= 2 * x_1 + 2, s1 >= 0, s1 <= 2 * x_2 + 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 2*z + 2*z^2 + 2*z' + 2*z'^2 }-> 1 + s8 + s9 :|: s8 >= 0, s8 <= 2 * z + 2, s9 >= 0, s9 <= 2 * z' + 2, z >= 0, z' >= 0 encode_merge(z, z') -{ 2 + s5 + 2*z + 2*z^2 + 2*z' + 2*z'^2 }-> s7 :|: s5 >= 0, s5 <= 2 * z + 2, s6 >= 0, s6 <= 2 * z' + 2, s7 >= 0, s7 <= s5 + s6, z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 3 + y }-> 1 + x + s :|: s >= 0, s <= y + (1 + 1 + 2), z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 4 + x + y }-> 1 + 1 + s' :|: s' >= 0, s' <= 1 + x + y + 2, z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: {encode_merge} Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] merge: runtime: O(n^1) [2 + z], size: O(n^1) [z + z'] encode_u: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2*z + 2*z^2], size: O(n^1) [2 + 2*z] encode_++: runtime: O(n^2) [2*z + 2*z^2 + 2*z' + 2*z'^2], size: O(n^1) [5 + 2*z + 2*z'] encode_merge: runtime: ?, size: O(n^1) [4 + 2*z + 2*z'] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_merge after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 4 + 4*z + 2*z^2 + 2*z' + 2*z'^2 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s2 + 2*x_1 + 2*x_1^2 + 2*x_2 + 2*x_2^2 }-> s4 :|: s2 >= 0, s2 <= 2 * x_1 + 2, s3 >= 0, s3 <= 2 * x_2 + 2, s4 >= 0, s4 <= s2 + s3, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 2*x_1 + 2*x_1^2 + 2*x_2 + 2*x_2^2 }-> 1 + s'' + s1 :|: s'' >= 0, s'' <= 2 * x_1 + 2, s1 >= 0, s1 <= 2 * x_2 + 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 2*z + 2*z^2 + 2*z' + 2*z'^2 }-> 1 + s8 + s9 :|: s8 >= 0, s8 <= 2 * z + 2, s9 >= 0, s9 <= 2 * z' + 2, z >= 0, z' >= 0 encode_merge(z, z') -{ 2 + s5 + 2*z + 2*z^2 + 2*z' + 2*z'^2 }-> s7 :|: s5 >= 0, s5 <= 2 * z + 2, s6 >= 0, s6 <= 2 * z' + 2, s7 >= 0, s7 <= s5 + s6, z >= 0, z' >= 0 encode_merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_nil -{ 0 }-> 0 :|: encode_u -{ 0 }-> 1 :|: encode_u -{ 0 }-> 0 :|: encode_v -{ 0 }-> 2 :|: encode_v -{ 0 }-> 0 :|: merge(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 merge(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 merge(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 merge(z, z') -{ 3 + y }-> 1 + x + s :|: s >= 0, s <= y + (1 + 1 + 2), z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 merge(z, z') -{ 4 + x + y }-> 1 + 1 + s' :|: s' >= 0, s' <= 1 + x + y + 2, z = 1 + x + y, x >= 0, y >= 0, z' = 1 + 1 + 2 Function symbols to be analyzed: Previous analysis results are: encode_v: runtime: O(1) [0], size: O(1) [2] encode_nil: runtime: O(1) [0], size: O(1) [0] merge: runtime: O(n^1) [2 + z], size: O(n^1) [z + z'] encode_u: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2*z + 2*z^2], size: O(n^1) [2 + 2*z] encode_++: runtime: O(n^2) [2*z + 2*z^2 + 2*z' + 2*z'^2], size: O(n^1) [5 + 2*z + 2*z'] encode_merge: runtime: O(n^2) [4 + 4*z + 2*z^2 + 2*z' + 2*z'^2], size: O(n^1) [4 + 2*z + 2*z'] ---------------------------------------- (61) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (62) BOUNDS(1, n^2) ---------------------------------------- (63) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (64) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: merge(x, nil) -> x merge(nil, y) -> y merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v))) merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(v) -> v encArg(cons_merge(x_1, x_2)) -> merge(encArg(x_1), encArg(x_2)) encode_merge(x_1, x_2) -> merge(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_u -> u encode_v -> v Rewrite Strategy: INNERMOST ---------------------------------------- (65) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence merge(++(x, y), ++(u, v)) ->^+ ++(x, merge(y, ++(u, v))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [y / ++(x, y)]. The result substitution is [ ]. ---------------------------------------- (66) Complex Obligation (BEST) ---------------------------------------- (67) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: merge(x, nil) -> x merge(nil, y) -> y merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v))) merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(v) -> v encArg(cons_merge(x_1, x_2)) -> merge(encArg(x_1), encArg(x_2)) encode_merge(x_1, x_2) -> merge(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_u -> u encode_v -> v Rewrite Strategy: INNERMOST ---------------------------------------- (68) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (69) BOUNDS(n^1, INF) ---------------------------------------- (70) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: merge(x, nil) -> x merge(nil, y) -> y merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v))) merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(v) -> v encArg(cons_merge(x_1, x_2)) -> merge(encArg(x_1), encArg(x_2)) encode_merge(x_1, x_2) -> merge(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) encode_u -> u encode_v -> v Rewrite Strategy: INNERMOST