/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 213 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection (13) DecreasingLoopProof [FINISHED, 0 ms] (14) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: msort(nil) -> nil msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y)))) min(x, nil) -> x min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z)) del(x, nil) -> nil del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(<=(x_1, x_2)) -> <=(encArg(x_1), encArg(x_2)) encArg(=(x_1, x_2)) -> =(encArg(x_1), encArg(x_2)) encArg(cons_msort(x_1)) -> msort(encArg(x_1)) encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encode_msort(x_1) -> msort(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<=(x_1, x_2) -> <=(encArg(x_1), encArg(x_2)) encode_=(x_1, x_2) -> =(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: msort(nil) -> nil msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y)))) min(x, nil) -> x min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z)) del(x, nil) -> nil del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z))) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(<=(x_1, x_2)) -> <=(encArg(x_1), encArg(x_2)) encArg(=(x_1, x_2)) -> =(encArg(x_1), encArg(x_2)) encArg(cons_msort(x_1)) -> msort(encArg(x_1)) encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encode_msort(x_1) -> msort(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<=(x_1, x_2) -> <=(encArg(x_1), encArg(x_2)) encode_=(x_1, x_2) -> =(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: msort(nil) -> nil msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y)))) min(x, nil) -> x min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z)) del(x, nil) -> nil del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z))) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(<=(x_1, x_2)) -> <=(encArg(x_1), encArg(x_2)) encArg(=(x_1, x_2)) -> =(encArg(x_1), encArg(x_2)) encArg(cons_msort(x_1)) -> msort(encArg(x_1)) encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encode_msort(x_1) -> msort(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<=(x_1, x_2) -> <=(encArg(x_1), encArg(x_2)) encode_=(x_1, x_2) -> =(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: msort(nil) -> nil msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y)))) min(x, nil) -> x min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z)) del(x, nil) -> nil del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z))) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(<=(x_1, x_2)) -> <=(encArg(x_1), encArg(x_2)) encArg(=(x_1, x_2)) -> =(encArg(x_1), encArg(x_2)) encArg(cons_msort(x_1)) -> msort(encArg(x_1)) encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encode_msort(x_1) -> msort(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<=(x_1, x_2) -> <=(encArg(x_1), encArg(x_2)) encode_=(x_1, x_2) -> =(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence del(x, .(y, z)) ->^+ if(=(x, y), z, .(y, del(x, z))) gives rise to a decreasing loop by considering the right hand sides subterm at position [2,1]. The pumping substitution is [z / .(y, z)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: msort(nil) -> nil msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y)))) min(x, nil) -> x min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z)) del(x, nil) -> nil del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z))) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(<=(x_1, x_2)) -> <=(encArg(x_1), encArg(x_2)) encArg(=(x_1, x_2)) -> =(encArg(x_1), encArg(x_2)) encArg(cons_msort(x_1)) -> msort(encArg(x_1)) encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encode_msort(x_1) -> msort(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<=(x_1, x_2) -> <=(encArg(x_1), encArg(x_2)) encode_=(x_1, x_2) -> =(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: msort(nil) -> nil msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y)))) min(x, nil) -> x min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z)) del(x, nil) -> nil del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z))) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(<=(x_1, x_2)) -> <=(encArg(x_1), encArg(x_2)) encArg(=(x_1, x_2)) -> =(encArg(x_1), encArg(x_2)) encArg(cons_msort(x_1)) -> msort(encArg(x_1)) encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encode_msort(x_1) -> msort(encArg(x_1)) encode_nil -> nil encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<=(x_1, x_2) -> <=(encArg(x_1), encArg(x_2)) encode_=(x_1, x_2) -> =(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (13) DecreasingLoopProof (FINISHED) The following loop(s) give(s) rise to the lower bound EXP: The rewrite sequence min(x, .(y, z)) ->^+ if(<=(x, y), min(x, z), min(y, z)) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [z / .(y, z)]. The result substitution is [ ]. The rewrite sequence min(x, .(y, z)) ->^+ if(<=(x, y), min(x, z), min(y, z)) gives rise to a decreasing loop by considering the right hand sides subterm at position [2]. The pumping substitution is [z / .(y, z)]. The result substitution is [x / y]. ---------------------------------------- (14) BOUNDS(EXP, INF)