/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 145 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 563 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 78 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +(+(x, y), z) -> +(x, +(y, z)) +(f(x), f(y)) -> f(+(x, y)) +(f(x), +(f(y), z)) -> +(f(+(x, y)), z) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(f(x_1)) -> f(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +(+(x, y), z) -> +(x, +(y, z)) +(f(x), f(y)) -> f(+(x, y)) +(f(x), +(f(y), z)) -> +(f(+(x, y)), z) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +(+(x, y), z) -> +(x, +(y, z)) +(f(x), f(y)) -> f(+(x, y)) +(f(x), +(f(y), z)) -> +(f(+(x, y)), z) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +'(+'(x, y), z) -> +'(x, +'(y, z)) +'(f(x), f(y)) -> f(+'(x, y)) +'(f(x), +'(f(y), z)) -> +'(f(+'(x, y)), z) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: +'(+'(x, y), z) -> +'(x, +'(y, z)) +'(f(x), f(y)) -> f(+'(x, y)) +'(f(x), +'(f(y), z)) -> +'(f(+'(x, y)), z) encArg(f(x_1)) -> f(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) Types: +' :: f:cons_+ -> f:cons_+ -> f:cons_+ f :: f:cons_+ -> f:cons_+ encArg :: f:cons_+ -> f:cons_+ cons_+ :: f:cons_+ -> f:cons_+ -> f:cons_+ encode_+ :: f:cons_+ -> f:cons_+ -> f:cons_+ encode_f :: f:cons_+ -> f:cons_+ hole_f:cons_+1_0 :: f:cons_+ gen_f:cons_+2_0 :: Nat -> f:cons_+ ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: +', encArg They will be analysed ascendingly in the following order: +' < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: +'(+'(x, y), z) -> +'(x, +'(y, z)) +'(f(x), f(y)) -> f(+'(x, y)) +'(f(x), +'(f(y), z)) -> +'(f(+'(x, y)), z) encArg(f(x_1)) -> f(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) Types: +' :: f:cons_+ -> f:cons_+ -> f:cons_+ f :: f:cons_+ -> f:cons_+ encArg :: f:cons_+ -> f:cons_+ cons_+ :: f:cons_+ -> f:cons_+ -> f:cons_+ encode_+ :: f:cons_+ -> f:cons_+ -> f:cons_+ encode_f :: f:cons_+ -> f:cons_+ hole_f:cons_+1_0 :: f:cons_+ gen_f:cons_+2_0 :: Nat -> f:cons_+ Generator Equations: gen_f:cons_+2_0(0) <=> hole_f:cons_+1_0 gen_f:cons_+2_0(+(x, 1)) <=> f(gen_f:cons_+2_0(x)) The following defined symbols remain to be analysed: +', encArg They will be analysed ascendingly in the following order: +' < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_f:cons_+2_0(+(1, n4_0)), gen_f:cons_+2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: +'(gen_f:cons_+2_0(+(1, 0)), gen_f:cons_+2_0(+(1, 0))) Induction Step: +'(gen_f:cons_+2_0(+(1, +(n4_0, 1))), gen_f:cons_+2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) f(+'(gen_f:cons_+2_0(+(1, n4_0)), gen_f:cons_+2_0(+(1, n4_0)))) ->_IH f(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: +'(+'(x, y), z) -> +'(x, +'(y, z)) +'(f(x), f(y)) -> f(+'(x, y)) +'(f(x), +'(f(y), z)) -> +'(f(+'(x, y)), z) encArg(f(x_1)) -> f(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) Types: +' :: f:cons_+ -> f:cons_+ -> f:cons_+ f :: f:cons_+ -> f:cons_+ encArg :: f:cons_+ -> f:cons_+ cons_+ :: f:cons_+ -> f:cons_+ -> f:cons_+ encode_+ :: f:cons_+ -> f:cons_+ -> f:cons_+ encode_f :: f:cons_+ -> f:cons_+ hole_f:cons_+1_0 :: f:cons_+ gen_f:cons_+2_0 :: Nat -> f:cons_+ Generator Equations: gen_f:cons_+2_0(0) <=> hole_f:cons_+1_0 gen_f:cons_+2_0(+(x, 1)) <=> f(gen_f:cons_+2_0(x)) The following defined symbols remain to be analysed: +', encArg They will be analysed ascendingly in the following order: +' < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: +'(+'(x, y), z) -> +'(x, +'(y, z)) +'(f(x), f(y)) -> f(+'(x, y)) +'(f(x), +'(f(y), z)) -> +'(f(+'(x, y)), z) encArg(f(x_1)) -> f(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) Types: +' :: f:cons_+ -> f:cons_+ -> f:cons_+ f :: f:cons_+ -> f:cons_+ encArg :: f:cons_+ -> f:cons_+ cons_+ :: f:cons_+ -> f:cons_+ -> f:cons_+ encode_+ :: f:cons_+ -> f:cons_+ -> f:cons_+ encode_f :: f:cons_+ -> f:cons_+ hole_f:cons_+1_0 :: f:cons_+ gen_f:cons_+2_0 :: Nat -> f:cons_+ Lemmas: +'(gen_f:cons_+2_0(+(1, n4_0)), gen_f:cons_+2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_f:cons_+2_0(0) <=> hole_f:cons_+1_0 gen_f:cons_+2_0(+(x, 1)) <=> f(gen_f:cons_+2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_f:cons_+2_0(+(1, n1460_0))) -> *3_0, rt in Omega(0) Induction Base: encArg(gen_f:cons_+2_0(+(1, 0))) Induction Step: encArg(gen_f:cons_+2_0(+(1, +(n1460_0, 1)))) ->_R^Omega(0) f(encArg(gen_f:cons_+2_0(+(1, n1460_0)))) ->_IH f(*3_0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)