/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 213 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 196 ms] (12) proven lower bound (13) LowerBoundPropagationProof [FINISHED, 0 ms] (14) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: if(true, x, y) -> x if(false, x, y) -> y if(x, y, y) -> y if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v)) if(x, if(x, y, z), z) -> if(x, y, z) if(x, y, if(x, y, z)) -> if(x, y, z) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(true) -> true encArg(false) -> false encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_true -> true encode_false -> false ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: if(true, x, y) -> x if(false, x, y) -> y if(x, y, y) -> y if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v)) if(x, if(x, y, z), z) -> if(x, y, z) if(x, y, if(x, y, z)) -> if(x, y, z) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_true -> true encode_false -> false Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: if(true, x, y) -> x if(false, x, y) -> y if(x, y, y) -> y if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v)) if(x, if(x, y, z), z) -> if(x, y, z) if(x, y, if(x, y, z)) -> if(x, y, z) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_true -> true encode_false -> false Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: if(true, x, y) -> x if(false, x, y) -> y if(x, y, y) -> y if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v)) if(x, if(x, y, z), z) -> if(x, y, z) if(x, y, if(x, y, z)) -> if(x, y, z) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_true -> true encode_false -> false Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: if(true, x, y) -> x if(false, x, y) -> y if(x, y, y) -> y if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v)) if(x, if(x, y, z), z) -> if(x, y, z) if(x, y, if(x, y, z)) -> if(x, y, z) encArg(true) -> true encArg(false) -> false encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_true -> true encode_false -> false Types: if :: true:false:cons_if -> true:false:cons_if -> true:false:cons_if -> true:false:cons_if true :: true:false:cons_if false :: true:false:cons_if encArg :: true:false:cons_if -> true:false:cons_if cons_if :: true:false:cons_if -> true:false:cons_if -> true:false:cons_if -> true:false:cons_if encode_if :: true:false:cons_if -> true:false:cons_if -> true:false:cons_if -> true:false:cons_if encode_true :: true:false:cons_if encode_false :: true:false:cons_if hole_true:false:cons_if1_0 :: true:false:cons_if gen_true:false:cons_if2_0 :: Nat -> true:false:cons_if ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: if, encArg They will be analysed ascendingly in the following order: if < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: if(true, x, y) -> x if(false, x, y) -> y if(x, y, y) -> y if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v)) if(x, if(x, y, z), z) -> if(x, y, z) if(x, y, if(x, y, z)) -> if(x, y, z) encArg(true) -> true encArg(false) -> false encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_true -> true encode_false -> false Types: if :: true:false:cons_if -> true:false:cons_if -> true:false:cons_if -> true:false:cons_if true :: true:false:cons_if false :: true:false:cons_if encArg :: true:false:cons_if -> true:false:cons_if cons_if :: true:false:cons_if -> true:false:cons_if -> true:false:cons_if -> true:false:cons_if encode_if :: true:false:cons_if -> true:false:cons_if -> true:false:cons_if -> true:false:cons_if encode_true :: true:false:cons_if encode_false :: true:false:cons_if hole_true:false:cons_if1_0 :: true:false:cons_if gen_true:false:cons_if2_0 :: Nat -> true:false:cons_if Generator Equations: gen_true:false:cons_if2_0(0) <=> true gen_true:false:cons_if2_0(+(x, 1)) <=> cons_if(true, true, gen_true:false:cons_if2_0(x)) The following defined symbols remain to be analysed: if, encArg They will be analysed ascendingly in the following order: if < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_true:false:cons_if2_0(n106_0)) -> gen_true:false:cons_if2_0(0), rt in Omega(n106_0) Induction Base: encArg(gen_true:false:cons_if2_0(0)) ->_R^Omega(0) true Induction Step: encArg(gen_true:false:cons_if2_0(+(n106_0, 1))) ->_R^Omega(0) if(encArg(true), encArg(true), encArg(gen_true:false:cons_if2_0(n106_0))) ->_R^Omega(0) if(true, encArg(true), encArg(gen_true:false:cons_if2_0(n106_0))) ->_R^Omega(0) if(true, true, encArg(gen_true:false:cons_if2_0(n106_0))) ->_IH if(true, true, gen_true:false:cons_if2_0(0)) ->_R^Omega(1) true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: if(true, x, y) -> x if(false, x, y) -> y if(x, y, y) -> y if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v)) if(x, if(x, y, z), z) -> if(x, y, z) if(x, y, if(x, y, z)) -> if(x, y, z) encArg(true) -> true encArg(false) -> false encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_true -> true encode_false -> false Types: if :: true:false:cons_if -> true:false:cons_if -> true:false:cons_if -> true:false:cons_if true :: true:false:cons_if false :: true:false:cons_if encArg :: true:false:cons_if -> true:false:cons_if cons_if :: true:false:cons_if -> true:false:cons_if -> true:false:cons_if -> true:false:cons_if encode_if :: true:false:cons_if -> true:false:cons_if -> true:false:cons_if -> true:false:cons_if encode_true :: true:false:cons_if encode_false :: true:false:cons_if hole_true:false:cons_if1_0 :: true:false:cons_if gen_true:false:cons_if2_0 :: Nat -> true:false:cons_if Generator Equations: gen_true:false:cons_if2_0(0) <=> true gen_true:false:cons_if2_0(+(x, 1)) <=> cons_if(true, true, gen_true:false:cons_if2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (13) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (14) BOUNDS(n^1, INF)