/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 227 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 6 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 75 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 24 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 353 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 94 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 461 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 114 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 149 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 72 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 74 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 22 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 1169 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 630 ms] (54) CpxRNTS (55) ResultPropagationProof [UPPER BOUND(ID), 2 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 99 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 168 ms] (64) CpxRNTS (65) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (66) CpxRNTS (67) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 638 ms] (70) CpxRNTS (71) IntTrsBoundProof [UPPER BOUND(ID), 227 ms] (72) CpxRNTS (73) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 209 ms] (76) CpxRNTS (77) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (78) CpxRNTS (79) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (80) CpxRNTS (81) IntTrsBoundProof [UPPER BOUND(ID), 86 ms] (82) CpxRNTS (83) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (84) CpxRNTS (85) FinalProof [FINISHED, 0 ms] (86) BOUNDS(1, n^2) (87) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (88) TRS for Loop Detection (89) DecreasingLoopProof [LOWER BOUND(ID), 2 ms] (90) BEST (91) proven lower bound (92) LowerBoundPropagationProof [FINISHED, 0 ms] (93) BOUNDS(n^1, INF) (94) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: norm(nil) -> 0 norm(g(x, y)) -> s(norm(x)) f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) rem(nil, y) -> nil rem(g(x, y), 0) -> g(x, y) rem(g(x, y), s(z)) -> rem(x, z) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nil) -> nil encArg(0) -> 0 encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_norm(x_1)) -> norm(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_rem(x_1, x_2)) -> rem(encArg(x_1), encArg(x_2)) encode_norm(x_1) -> norm(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_rem(x_1, x_2) -> rem(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: norm(nil) -> 0 norm(g(x, y)) -> s(norm(x)) f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) rem(nil, y) -> nil rem(g(x, y), 0) -> g(x, y) rem(g(x, y), s(z)) -> rem(x, z) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(0) -> 0 encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_norm(x_1)) -> norm(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_rem(x_1, x_2)) -> rem(encArg(x_1), encArg(x_2)) encode_norm(x_1) -> norm(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_rem(x_1, x_2) -> rem(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: norm(nil) -> 0 norm(g(x, y)) -> s(norm(x)) f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) rem(nil, y) -> nil rem(g(x, y), 0) -> g(x, y) rem(g(x, y), s(z)) -> rem(x, z) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(0) -> 0 encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_norm(x_1)) -> norm(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_rem(x_1, x_2)) -> rem(encArg(x_1), encArg(x_2)) encode_norm(x_1) -> norm(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_rem(x_1, x_2) -> rem(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: norm(nil) -> 0 [1] norm(g(x, y)) -> s(norm(x)) [1] f(x, nil) -> g(nil, x) [1] f(x, g(y, z)) -> g(f(x, y), z) [1] rem(nil, y) -> nil [1] rem(g(x, y), 0) -> g(x, y) [1] rem(g(x, y), s(z)) -> rem(x, z) [1] encArg(nil) -> nil [0] encArg(0) -> 0 [0] encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_norm(x_1)) -> norm(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_rem(x_1, x_2)) -> rem(encArg(x_1), encArg(x_2)) [0] encode_norm(x_1) -> norm(encArg(x_1)) [0] encode_nil -> nil [0] encode_0 -> 0 [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_rem(x_1, x_2) -> rem(encArg(x_1), encArg(x_2)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: norm(nil) -> 0 [1] norm(g(x, y)) -> s(norm(x)) [1] f(x, nil) -> g(nil, x) [1] f(x, g(y, z)) -> g(f(x, y), z) [1] rem(nil, y) -> nil [1] rem(g(x, y), 0) -> g(x, y) [1] rem(g(x, y), s(z)) -> rem(x, z) [1] encArg(nil) -> nil [0] encArg(0) -> 0 [0] encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_norm(x_1)) -> norm(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_rem(x_1, x_2)) -> rem(encArg(x_1), encArg(x_2)) [0] encode_norm(x_1) -> norm(encArg(x_1)) [0] encode_nil -> nil [0] encode_0 -> 0 [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_rem(x_1, x_2) -> rem(encArg(x_1), encArg(x_2)) [0] The TRS has the following type information: norm :: nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem nil :: nil:0:g:s:cons_norm:cons_f:cons_rem 0 :: nil:0:g:s:cons_norm:cons_f:cons_rem g :: nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem s :: nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem f :: nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem rem :: nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem encArg :: nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem cons_norm :: nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem cons_f :: nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem cons_rem :: nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem encode_norm :: nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem encode_nil :: nil:0:g:s:cons_norm:cons_f:cons_rem encode_0 :: nil:0:g:s:cons_norm:cons_f:cons_rem encode_g :: nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem encode_s :: nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem encode_f :: nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem encode_rem :: nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem -> nil:0:g:s:cons_norm:cons_f:cons_rem Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: rem_2 norm_1 f_2 encArg_1 encode_norm_1 encode_nil encode_0 encode_g_2 encode_s_1 encode_f_2 encode_rem_2 Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_norm(v0) -> null_encode_norm [0] encode_nil -> null_encode_nil [0] encode_0 -> null_encode_0 [0] encode_g(v0, v1) -> null_encode_g [0] encode_s(v0) -> null_encode_s [0] encode_f(v0, v1) -> null_encode_f [0] encode_rem(v0, v1) -> null_encode_rem [0] rem(v0, v1) -> null_rem [0] norm(v0) -> null_norm [0] f(v0, v1) -> null_f [0] And the following fresh constants: null_encArg, null_encode_norm, null_encode_nil, null_encode_0, null_encode_g, null_encode_s, null_encode_f, null_encode_rem, null_rem, null_norm, null_f ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: norm(nil) -> 0 [1] norm(g(x, y)) -> s(norm(x)) [1] f(x, nil) -> g(nil, x) [1] f(x, g(y, z)) -> g(f(x, y), z) [1] rem(nil, y) -> nil [1] rem(g(x, y), 0) -> g(x, y) [1] rem(g(x, y), s(z)) -> rem(x, z) [1] encArg(nil) -> nil [0] encArg(0) -> 0 [0] encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_norm(x_1)) -> norm(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_rem(x_1, x_2)) -> rem(encArg(x_1), encArg(x_2)) [0] encode_norm(x_1) -> norm(encArg(x_1)) [0] encode_nil -> nil [0] encode_0 -> 0 [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_rem(x_1, x_2) -> rem(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> null_encArg [0] encode_norm(v0) -> null_encode_norm [0] encode_nil -> null_encode_nil [0] encode_0 -> null_encode_0 [0] encode_g(v0, v1) -> null_encode_g [0] encode_s(v0) -> null_encode_s [0] encode_f(v0, v1) -> null_encode_f [0] encode_rem(v0, v1) -> null_encode_rem [0] rem(v0, v1) -> null_rem [0] norm(v0) -> null_norm [0] f(v0, v1) -> null_f [0] The TRS has the following type information: norm :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f nil :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f 0 :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f g :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f s :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f f :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f rem :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encArg :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f cons_norm :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f cons_f :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f cons_rem :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encode_norm :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encode_nil :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encode_0 :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encode_g :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encode_s :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encode_f :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encode_rem :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encArg :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encode_norm :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encode_nil :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encode_0 :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encode_g :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encode_s :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encode_f :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encode_rem :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_rem :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_norm :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_f :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: norm(nil) -> 0 [1] norm(g(x, y)) -> s(norm(x)) [1] f(x, nil) -> g(nil, x) [1] f(x, g(y, z)) -> g(f(x, y), z) [1] rem(nil, y) -> nil [1] rem(g(x, y), 0) -> g(x, y) [1] rem(g(x, y), s(z)) -> rem(x, z) [1] encArg(nil) -> nil [0] encArg(0) -> 0 [0] encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_norm(nil)) -> norm(nil) [0] encArg(cons_norm(0)) -> norm(0) [0] encArg(cons_norm(g(x_1', x_2'))) -> norm(g(encArg(x_1'), encArg(x_2'))) [0] encArg(cons_norm(s(x_1''))) -> norm(s(encArg(x_1''))) [0] encArg(cons_norm(cons_norm(x_11))) -> norm(norm(encArg(x_11))) [0] encArg(cons_norm(cons_f(x_12, x_2''))) -> norm(f(encArg(x_12), encArg(x_2''))) [0] encArg(cons_norm(cons_rem(x_13, x_21))) -> norm(rem(encArg(x_13), encArg(x_21))) [0] encArg(cons_norm(x_1)) -> norm(null_encArg) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_rem(x_1, x_2)) -> rem(encArg(x_1), encArg(x_2)) [0] encode_norm(nil) -> norm(nil) [0] encode_norm(0) -> norm(0) [0] encode_norm(g(x_194, x_256)) -> norm(g(encArg(x_194), encArg(x_256))) [0] encode_norm(s(x_195)) -> norm(s(encArg(x_195))) [0] encode_norm(cons_norm(x_196)) -> norm(norm(encArg(x_196))) [0] encode_norm(cons_f(x_197, x_257)) -> norm(f(encArg(x_197), encArg(x_257))) [0] encode_norm(cons_rem(x_198, x_258)) -> norm(rem(encArg(x_198), encArg(x_258))) [0] encode_norm(x_1) -> norm(null_encArg) [0] encode_nil -> nil [0] encode_0 -> 0 [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_rem(x_1, x_2) -> rem(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> null_encArg [0] encode_norm(v0) -> null_encode_norm [0] encode_nil -> null_encode_nil [0] encode_0 -> null_encode_0 [0] encode_g(v0, v1) -> null_encode_g [0] encode_s(v0) -> null_encode_s [0] encode_f(v0, v1) -> null_encode_f [0] encode_rem(v0, v1) -> null_encode_rem [0] rem(v0, v1) -> null_rem [0] norm(v0) -> null_norm [0] f(v0, v1) -> null_f [0] The TRS has the following type information: norm :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f nil :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f 0 :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f g :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f s :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f f :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f rem :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encArg :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f cons_norm :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f cons_f :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f cons_rem :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encode_norm :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encode_nil :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encode_0 :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encode_g :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encode_s :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encode_f :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f encode_rem :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f -> nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encArg :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encode_norm :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encode_nil :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encode_0 :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encode_g :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encode_s :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encode_f :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_encode_rem :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_rem :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_norm :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f null_f :: nil:0:g:s:cons_norm:cons_f:cons_rem:null_encArg:null_encode_norm:null_encode_nil:null_encode_0:null_encode_g:null_encode_s:null_encode_f:null_encode_rem:null_rem:null_norm:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: nil => 1 0 => 0 null_encArg => 0 null_encode_norm => 0 null_encode_nil => 0 null_encode_0 => 0 null_encode_g => 0 null_encode_s => 0 null_encode_f => 0 null_encode_rem => 0 null_rem => 0 null_norm => 0 null_f => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(x_11))) :|: z' = 1 + (1 + x_11), x_11 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1) :|: z' = 1 + 1 encArg(z') -{ 0 }-> norm(0) :|: z' = 1 + 0 encArg(z') -{ 0 }-> norm(0) :|: x_1 >= 0, z' = 1 + x_1 encArg(z') -{ 0 }-> norm(1 + encArg(x_1'')) :|: x_1'' >= 0, z' = 1 + (1 + x_1'') encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 encArg(z') -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z' = 1 + x_1 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z' = x_1, x_2 >= 0, z'' = x_2 encode_f(z', z'') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z'' = v1, z' = v0 encode_g(z', z'') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z'' = v1, z' = v0 encode_g(z', z'') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z' = x_1, x_2 >= 0, z'' = x_2 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(x_196))) :|: z' = 1 + x_196, x_196 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1) :|: z' = 1 encode_norm(z') -{ 0 }-> norm(0) :|: z' = 0 encode_norm(z') -{ 0 }-> norm(0) :|: x_1 >= 0, z' = x_1 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_195)) :|: z' = 1 + x_195, x_195 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 encode_rem(z', z'') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z' = x_1, x_2 >= 0, z'' = x_2 encode_rem(z', z'') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z'' = v1, z' = v0 encode_s(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 encode_s(z') -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z' = x_1 f(z', z'') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z'' = v1, z' = v0 f(z', z'') -{ 1 }-> 1 + f(x, y) + z :|: z >= 0, z' = x, x >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + x :|: z' = x, x >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 norm(z') -{ 1 }-> 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> rem(x, z) :|: z >= 0, z' = 1 + x + y, x >= 0, y >= 0, z'' = 1 + z rem(z', z'') -{ 1 }-> 1 :|: z'' = y, y >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z'' = v1, z' = v0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1) :|: z' = 1 + 1 encArg(z') -{ 0 }-> norm(0) :|: z' = 1 + 0 encArg(z') -{ 0 }-> norm(0) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1) :|: z' = 1 encode_norm(z') -{ 0 }-> norm(0) :|: z' = 0 encode_norm(z') -{ 0 }-> norm(0) :|: z' >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 1 }-> 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> rem(x, z'' - 1) :|: z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_0 } { f } { rem } { norm } { encode_nil } { encArg } { encode_rem } { encode_g } { encode_norm } { encode_f } { encode_s } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1) :|: z' = 1 + 1 encArg(z') -{ 0 }-> norm(0) :|: z' = 1 + 0 encArg(z') -{ 0 }-> norm(0) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1) :|: z' = 1 encode_norm(z') -{ 0 }-> norm(0) :|: z' = 0 encode_norm(z') -{ 0 }-> norm(0) :|: z' >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 1 }-> 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> rem(x, z'' - 1) :|: z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_0}, {f}, {rem}, {norm}, {encode_nil}, {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1) :|: z' = 1 + 1 encArg(z') -{ 0 }-> norm(0) :|: z' = 1 + 0 encArg(z') -{ 0 }-> norm(0) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1) :|: z' = 1 encode_norm(z') -{ 0 }-> norm(0) :|: z' = 0 encode_norm(z') -{ 0 }-> norm(0) :|: z' >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 1 }-> 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> rem(x, z'' - 1) :|: z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_0}, {f}, {rem}, {norm}, {encode_nil}, {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1) :|: z' = 1 + 1 encArg(z') -{ 0 }-> norm(0) :|: z' = 1 + 0 encArg(z') -{ 0 }-> norm(0) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1) :|: z' = 1 encode_norm(z') -{ 0 }-> norm(0) :|: z' = 0 encode_norm(z') -{ 0 }-> norm(0) :|: z' >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 1 }-> 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> rem(x, z'' - 1) :|: z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_0}, {f}, {rem}, {norm}, {encode_nil}, {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: ?, size: O(1) [0] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1) :|: z' = 1 + 1 encArg(z') -{ 0 }-> norm(0) :|: z' = 1 + 0 encArg(z') -{ 0 }-> norm(0) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1) :|: z' = 1 encode_norm(z') -{ 0 }-> norm(0) :|: z' = 0 encode_norm(z') -{ 0 }-> norm(0) :|: z' >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 1 }-> 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> rem(x, z'' - 1) :|: z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {f}, {rem}, {norm}, {encode_nil}, {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1) :|: z' = 1 + 1 encArg(z') -{ 0 }-> norm(0) :|: z' = 1 + 0 encArg(z') -{ 0 }-> norm(0) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1) :|: z' = 1 encode_norm(z') -{ 0 }-> norm(0) :|: z' = 0 encode_norm(z') -{ 0 }-> norm(0) :|: z' >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 1 }-> 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> rem(x, z'' - 1) :|: z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {f}, {rem}, {norm}, {encode_nil}, {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' + z'' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1) :|: z' = 1 + 1 encArg(z') -{ 0 }-> norm(0) :|: z' = 1 + 0 encArg(z') -{ 0 }-> norm(0) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1) :|: z' = 1 encode_norm(z') -{ 0 }-> norm(0) :|: z' = 0 encode_norm(z') -{ 0 }-> norm(0) :|: z' >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 1 }-> 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> rem(x, z'' - 1) :|: z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {f}, {rem}, {norm}, {encode_nil}, {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: ?, size: O(n^1) [1 + z' + z''] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z'' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1) :|: z' = 1 + 1 encArg(z') -{ 0 }-> norm(0) :|: z' = 1 + 0 encArg(z') -{ 0 }-> norm(0) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1) :|: z' = 1 encode_norm(z') -{ 0 }-> norm(0) :|: z' = 0 encode_norm(z') -{ 0 }-> norm(0) :|: z' >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 1 }-> 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> rem(x, z'' - 1) :|: z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {rem}, {norm}, {encode_nil}, {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1) :|: z' = 1 + 1 encArg(z') -{ 0 }-> norm(0) :|: z' = 1 + 0 encArg(z') -{ 0 }-> norm(0) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1) :|: z' = 1 encode_norm(z') -{ 0 }-> norm(0) :|: z' = 0 encode_norm(z') -{ 0 }-> norm(0) :|: z' >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 1 }-> 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> rem(x, z'' - 1) :|: z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {rem}, {norm}, {encode_nil}, {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: rem after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1) :|: z' = 1 + 1 encArg(z') -{ 0 }-> norm(0) :|: z' = 1 + 0 encArg(z') -{ 0 }-> norm(0) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1) :|: z' = 1 encode_norm(z') -{ 0 }-> norm(0) :|: z' = 0 encode_norm(z') -{ 0 }-> norm(0) :|: z' >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 1 }-> 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> rem(x, z'' - 1) :|: z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {rem}, {norm}, {encode_nil}, {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: rem after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z'' ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1) :|: z' = 1 + 1 encArg(z') -{ 0 }-> norm(0) :|: z' = 1 + 0 encArg(z') -{ 0 }-> norm(0) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1) :|: z' = 1 encode_norm(z') -{ 0 }-> norm(0) :|: z' = 0 encode_norm(z') -{ 0 }-> norm(0) :|: z' >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 1 }-> 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> rem(x, z'' - 1) :|: z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {norm}, {encode_nil}, {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1) :|: z' = 1 + 1 encArg(z') -{ 0 }-> norm(0) :|: z' = 1 + 0 encArg(z') -{ 0 }-> norm(0) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1) :|: z' = 1 encode_norm(z') -{ 0 }-> norm(0) :|: z' = 0 encode_norm(z') -{ 0 }-> norm(0) :|: z' >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 1 }-> 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {norm}, {encode_nil}, {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: norm after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1) :|: z' = 1 + 1 encArg(z') -{ 0 }-> norm(0) :|: z' = 1 + 0 encArg(z') -{ 0 }-> norm(0) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1) :|: z' = 1 encode_norm(z') -{ 0 }-> norm(0) :|: z' = 0 encode_norm(z') -{ 0 }-> norm(0) :|: z' >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 1 }-> 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {norm}, {encode_nil}, {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: norm after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1) :|: z' = 1 + 1 encArg(z') -{ 0 }-> norm(0) :|: z' = 1 + 0 encArg(z') -{ 0 }-> norm(0) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1) :|: z' = 1 encode_norm(z') -{ 0 }-> norm(0) :|: z' = 0 encode_norm(z') -{ 0 }-> norm(0) :|: z' >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 1 }-> 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_nil}, {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_nil}, {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_nil after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_nil}, {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: ?, size: O(1) [1] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_nil after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 4*z' ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encArg}, {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: ?, size: O(n^1) [1 + 4*z'] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2 + 26*z' + 16*z'^2 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 0 }-> rem(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> norm(rem(encArg(x_13), encArg(x_21))) :|: z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 0 }-> norm(norm(encArg(z' - 2))) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(f(encArg(x_12), encArg(x_2''))) :|: z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(z' - 2)) :|: z' - 2 >= 0 encArg(z') -{ 0 }-> norm(1 + encArg(x_1') + encArg(x_2')) :|: x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encArg(z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 0 }-> f(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 1 + encArg(z') + encArg(z'') :|: z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> norm(rem(encArg(x_198), encArg(x_258))) :|: x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 0 }-> norm(norm(encArg(z' - 1))) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(f(encArg(x_197), encArg(x_257))) :|: x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 0 }-> norm(1 + encArg(z' - 1)) :|: z' - 1 >= 0 encode_norm(z') -{ 0 }-> norm(1 + encArg(x_194) + encArg(x_256)) :|: z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 0 }-> rem(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] ---------------------------------------- (55) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 6 + s10 + s11 + 26*x_1' + 16*x_1'^2 + 26*x_2' + 16*x_2'^2 }-> s12 :|: s10 >= 0, s10 <= 4 * x_1' + 1, s11 >= 0, s11 <= 4 * x_2' + 1, s12 >= 0, s12 <= 1 + s10 + s11, x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 16 + s13 + -38*z' + 16*z'^2 }-> s14 :|: s13 >= 0, s13 <= 4 * (z' - 2) + 1, s14 >= 0, s14 <= 1 + s13, z' - 2 >= 0 encArg(z') -{ 16 + s15 + s16 + -38*z' + 16*z'^2 }-> s17 :|: s15 >= 0, s15 <= 4 * (z' - 2) + 1, s16 >= 0, s16 <= s15, s17 >= 0, s17 <= s16, z' - 2 >= 0 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 6 + s19 + s20 + 26*x_12 + 16*x_12^2 + 26*x_2'' + 16*x_2''^2 }-> s21 :|: s18 >= 0, s18 <= 4 * x_12 + 1, s19 >= 0, s19 <= 4 * x_2'' + 1, s20 >= 0, s20 <= s18 + s19 + 1, s21 >= 0, s21 <= s20, z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 6 + s23 + s24 + 26*x_13 + 16*x_13^2 + 26*x_21 + 16*x_21^2 }-> s25 :|: s22 >= 0, s22 <= 4 * x_13 + 1, s23 >= 0, s23 <= 4 * x_21 + 1, s24 >= 0, s24 <= s22, s25 >= 0, s25 <= s24, z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 5 + s27 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s28 :|: s26 >= 0, s26 <= 4 * x_1 + 1, s27 >= 0, s27 <= 4 * x_2 + 1, s28 >= 0, s28 <= s26 + s27 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 5 + s30 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s31 :|: s29 >= 0, s29 <= 4 * x_1 + 1, s30 >= 0, s30 <= 4 * x_2 + 1, s31 >= 0, s31 <= s29, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ -8 + -6*z' + 16*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 4 * (z' - 1) + 1, z' - 1 >= 0 encArg(z') -{ 4 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 4 * x_1 + 1, s8 >= 0, s8 <= 4 * x_2 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 5 + s52 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s53 :|: s51 >= 0, s51 <= 4 * z' + 1, s52 >= 0, s52 <= 4 * z'' + 1, s53 >= 0, s53 <= s51 + s52 + 1, z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> 1 + s48 + s49 :|: s48 >= 0, s48 <= 4 * z' + 1, s49 >= 0, s49 <= 4 * z'' + 1, z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 6 + s32 + s33 + 26*x_194 + 16*x_194^2 + 26*x_256 + 16*x_256^2 }-> s34 :|: s32 >= 0, s32 <= 4 * x_194 + 1, s33 >= 0, s33 <= 4 * x_256 + 1, s34 >= 0, s34 <= 1 + s32 + s33, z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ -6 + s35 + -6*z' + 16*z'^2 }-> s36 :|: s35 >= 0, s35 <= 4 * (z' - 1) + 1, s36 >= 0, s36 <= 1 + s35, z' - 1 >= 0 encode_norm(z') -{ -6 + s37 + s38 + -6*z' + 16*z'^2 }-> s39 :|: s37 >= 0, s37 <= 4 * (z' - 1) + 1, s38 >= 0, s38 <= s37, s39 >= 0, s39 <= s38, z' - 1 >= 0 encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 6 + s41 + s42 + 26*x_197 + 16*x_197^2 + 26*x_257 + 16*x_257^2 }-> s43 :|: s40 >= 0, s40 <= 4 * x_197 + 1, s41 >= 0, s41 <= 4 * x_257 + 1, s42 >= 0, s42 <= s40 + s41 + 1, s43 >= 0, s43 <= s42, x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 6 + s45 + s46 + 26*x_198 + 16*x_198^2 + 26*x_258 + 16*x_258^2 }-> s47 :|: s44 >= 0, s44 <= 4 * x_198 + 1, s45 >= 0, s45 <= 4 * x_258 + 1, s46 >= 0, s46 <= s44, s47 >= 0, s47 <= s46, x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 5 + s55 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s56 :|: s54 >= 0, s54 <= 4 * z' + 1, s55 >= 0, s55 <= 4 * z'' + 1, s56 >= 0, s56 <= s54, z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2 + 26*z' + 16*z'^2 }-> 1 + s50 :|: s50 >= 0, s50 <= 4 * z' + 1, z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_rem after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 4*z' ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 6 + s10 + s11 + 26*x_1' + 16*x_1'^2 + 26*x_2' + 16*x_2'^2 }-> s12 :|: s10 >= 0, s10 <= 4 * x_1' + 1, s11 >= 0, s11 <= 4 * x_2' + 1, s12 >= 0, s12 <= 1 + s10 + s11, x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 16 + s13 + -38*z' + 16*z'^2 }-> s14 :|: s13 >= 0, s13 <= 4 * (z' - 2) + 1, s14 >= 0, s14 <= 1 + s13, z' - 2 >= 0 encArg(z') -{ 16 + s15 + s16 + -38*z' + 16*z'^2 }-> s17 :|: s15 >= 0, s15 <= 4 * (z' - 2) + 1, s16 >= 0, s16 <= s15, s17 >= 0, s17 <= s16, z' - 2 >= 0 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 6 + s19 + s20 + 26*x_12 + 16*x_12^2 + 26*x_2'' + 16*x_2''^2 }-> s21 :|: s18 >= 0, s18 <= 4 * x_12 + 1, s19 >= 0, s19 <= 4 * x_2'' + 1, s20 >= 0, s20 <= s18 + s19 + 1, s21 >= 0, s21 <= s20, z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 6 + s23 + s24 + 26*x_13 + 16*x_13^2 + 26*x_21 + 16*x_21^2 }-> s25 :|: s22 >= 0, s22 <= 4 * x_13 + 1, s23 >= 0, s23 <= 4 * x_21 + 1, s24 >= 0, s24 <= s22, s25 >= 0, s25 <= s24, z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 5 + s27 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s28 :|: s26 >= 0, s26 <= 4 * x_1 + 1, s27 >= 0, s27 <= 4 * x_2 + 1, s28 >= 0, s28 <= s26 + s27 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 5 + s30 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s31 :|: s29 >= 0, s29 <= 4 * x_1 + 1, s30 >= 0, s30 <= 4 * x_2 + 1, s31 >= 0, s31 <= s29, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ -8 + -6*z' + 16*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 4 * (z' - 1) + 1, z' - 1 >= 0 encArg(z') -{ 4 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 4 * x_1 + 1, s8 >= 0, s8 <= 4 * x_2 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 5 + s52 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s53 :|: s51 >= 0, s51 <= 4 * z' + 1, s52 >= 0, s52 <= 4 * z'' + 1, s53 >= 0, s53 <= s51 + s52 + 1, z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> 1 + s48 + s49 :|: s48 >= 0, s48 <= 4 * z' + 1, s49 >= 0, s49 <= 4 * z'' + 1, z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 6 + s32 + s33 + 26*x_194 + 16*x_194^2 + 26*x_256 + 16*x_256^2 }-> s34 :|: s32 >= 0, s32 <= 4 * x_194 + 1, s33 >= 0, s33 <= 4 * x_256 + 1, s34 >= 0, s34 <= 1 + s32 + s33, z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ -6 + s35 + -6*z' + 16*z'^2 }-> s36 :|: s35 >= 0, s35 <= 4 * (z' - 1) + 1, s36 >= 0, s36 <= 1 + s35, z' - 1 >= 0 encode_norm(z') -{ -6 + s37 + s38 + -6*z' + 16*z'^2 }-> s39 :|: s37 >= 0, s37 <= 4 * (z' - 1) + 1, s38 >= 0, s38 <= s37, s39 >= 0, s39 <= s38, z' - 1 >= 0 encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 6 + s41 + s42 + 26*x_197 + 16*x_197^2 + 26*x_257 + 16*x_257^2 }-> s43 :|: s40 >= 0, s40 <= 4 * x_197 + 1, s41 >= 0, s41 <= 4 * x_257 + 1, s42 >= 0, s42 <= s40 + s41 + 1, s43 >= 0, s43 <= s42, x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 6 + s45 + s46 + 26*x_198 + 16*x_198^2 + 26*x_258 + 16*x_258^2 }-> s47 :|: s44 >= 0, s44 <= 4 * x_198 + 1, s45 >= 0, s45 <= 4 * x_258 + 1, s46 >= 0, s46 <= s44, s47 >= 0, s47 <= s46, x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 5 + s55 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s56 :|: s54 >= 0, s54 <= 4 * z' + 1, s55 >= 0, s55 <= 4 * z'' + 1, s56 >= 0, s56 <= s54, z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2 + 26*z' + 16*z'^2 }-> 1 + s50 :|: s50 >= 0, s50 <= 4 * z' + 1, z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_rem}, {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] encode_rem: runtime: ?, size: O(n^1) [1 + 4*z'] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_rem after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 6 + s10 + s11 + 26*x_1' + 16*x_1'^2 + 26*x_2' + 16*x_2'^2 }-> s12 :|: s10 >= 0, s10 <= 4 * x_1' + 1, s11 >= 0, s11 <= 4 * x_2' + 1, s12 >= 0, s12 <= 1 + s10 + s11, x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 16 + s13 + -38*z' + 16*z'^2 }-> s14 :|: s13 >= 0, s13 <= 4 * (z' - 2) + 1, s14 >= 0, s14 <= 1 + s13, z' - 2 >= 0 encArg(z') -{ 16 + s15 + s16 + -38*z' + 16*z'^2 }-> s17 :|: s15 >= 0, s15 <= 4 * (z' - 2) + 1, s16 >= 0, s16 <= s15, s17 >= 0, s17 <= s16, z' - 2 >= 0 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 6 + s19 + s20 + 26*x_12 + 16*x_12^2 + 26*x_2'' + 16*x_2''^2 }-> s21 :|: s18 >= 0, s18 <= 4 * x_12 + 1, s19 >= 0, s19 <= 4 * x_2'' + 1, s20 >= 0, s20 <= s18 + s19 + 1, s21 >= 0, s21 <= s20, z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 6 + s23 + s24 + 26*x_13 + 16*x_13^2 + 26*x_21 + 16*x_21^2 }-> s25 :|: s22 >= 0, s22 <= 4 * x_13 + 1, s23 >= 0, s23 <= 4 * x_21 + 1, s24 >= 0, s24 <= s22, s25 >= 0, s25 <= s24, z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 5 + s27 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s28 :|: s26 >= 0, s26 <= 4 * x_1 + 1, s27 >= 0, s27 <= 4 * x_2 + 1, s28 >= 0, s28 <= s26 + s27 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 5 + s30 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s31 :|: s29 >= 0, s29 <= 4 * x_1 + 1, s30 >= 0, s30 <= 4 * x_2 + 1, s31 >= 0, s31 <= s29, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ -8 + -6*z' + 16*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 4 * (z' - 1) + 1, z' - 1 >= 0 encArg(z') -{ 4 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 4 * x_1 + 1, s8 >= 0, s8 <= 4 * x_2 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 5 + s52 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s53 :|: s51 >= 0, s51 <= 4 * z' + 1, s52 >= 0, s52 <= 4 * z'' + 1, s53 >= 0, s53 <= s51 + s52 + 1, z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> 1 + s48 + s49 :|: s48 >= 0, s48 <= 4 * z' + 1, s49 >= 0, s49 <= 4 * z'' + 1, z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 6 + s32 + s33 + 26*x_194 + 16*x_194^2 + 26*x_256 + 16*x_256^2 }-> s34 :|: s32 >= 0, s32 <= 4 * x_194 + 1, s33 >= 0, s33 <= 4 * x_256 + 1, s34 >= 0, s34 <= 1 + s32 + s33, z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ -6 + s35 + -6*z' + 16*z'^2 }-> s36 :|: s35 >= 0, s35 <= 4 * (z' - 1) + 1, s36 >= 0, s36 <= 1 + s35, z' - 1 >= 0 encode_norm(z') -{ -6 + s37 + s38 + -6*z' + 16*z'^2 }-> s39 :|: s37 >= 0, s37 <= 4 * (z' - 1) + 1, s38 >= 0, s38 <= s37, s39 >= 0, s39 <= s38, z' - 1 >= 0 encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 6 + s41 + s42 + 26*x_197 + 16*x_197^2 + 26*x_257 + 16*x_257^2 }-> s43 :|: s40 >= 0, s40 <= 4 * x_197 + 1, s41 >= 0, s41 <= 4 * x_257 + 1, s42 >= 0, s42 <= s40 + s41 + 1, s43 >= 0, s43 <= s42, x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 6 + s45 + s46 + 26*x_198 + 16*x_198^2 + 26*x_258 + 16*x_258^2 }-> s47 :|: s44 >= 0, s44 <= 4 * x_198 + 1, s45 >= 0, s45 <= 4 * x_258 + 1, s46 >= 0, s46 <= s44, s47 >= 0, s47 <= s46, x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 5 + s55 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s56 :|: s54 >= 0, s54 <= 4 * z' + 1, s55 >= 0, s55 <= 4 * z'' + 1, s56 >= 0, s56 <= s54, z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2 + 26*z' + 16*z'^2 }-> 1 + s50 :|: s50 >= 0, s50 <= 4 * z' + 1, z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] encode_rem: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [1 + 4*z'] ---------------------------------------- (61) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 6 + s10 + s11 + 26*x_1' + 16*x_1'^2 + 26*x_2' + 16*x_2'^2 }-> s12 :|: s10 >= 0, s10 <= 4 * x_1' + 1, s11 >= 0, s11 <= 4 * x_2' + 1, s12 >= 0, s12 <= 1 + s10 + s11, x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 16 + s13 + -38*z' + 16*z'^2 }-> s14 :|: s13 >= 0, s13 <= 4 * (z' - 2) + 1, s14 >= 0, s14 <= 1 + s13, z' - 2 >= 0 encArg(z') -{ 16 + s15 + s16 + -38*z' + 16*z'^2 }-> s17 :|: s15 >= 0, s15 <= 4 * (z' - 2) + 1, s16 >= 0, s16 <= s15, s17 >= 0, s17 <= s16, z' - 2 >= 0 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 6 + s19 + s20 + 26*x_12 + 16*x_12^2 + 26*x_2'' + 16*x_2''^2 }-> s21 :|: s18 >= 0, s18 <= 4 * x_12 + 1, s19 >= 0, s19 <= 4 * x_2'' + 1, s20 >= 0, s20 <= s18 + s19 + 1, s21 >= 0, s21 <= s20, z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 6 + s23 + s24 + 26*x_13 + 16*x_13^2 + 26*x_21 + 16*x_21^2 }-> s25 :|: s22 >= 0, s22 <= 4 * x_13 + 1, s23 >= 0, s23 <= 4 * x_21 + 1, s24 >= 0, s24 <= s22, s25 >= 0, s25 <= s24, z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 5 + s27 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s28 :|: s26 >= 0, s26 <= 4 * x_1 + 1, s27 >= 0, s27 <= 4 * x_2 + 1, s28 >= 0, s28 <= s26 + s27 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 5 + s30 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s31 :|: s29 >= 0, s29 <= 4 * x_1 + 1, s30 >= 0, s30 <= 4 * x_2 + 1, s31 >= 0, s31 <= s29, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ -8 + -6*z' + 16*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 4 * (z' - 1) + 1, z' - 1 >= 0 encArg(z') -{ 4 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 4 * x_1 + 1, s8 >= 0, s8 <= 4 * x_2 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 5 + s52 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s53 :|: s51 >= 0, s51 <= 4 * z' + 1, s52 >= 0, s52 <= 4 * z'' + 1, s53 >= 0, s53 <= s51 + s52 + 1, z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> 1 + s48 + s49 :|: s48 >= 0, s48 <= 4 * z' + 1, s49 >= 0, s49 <= 4 * z'' + 1, z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 6 + s32 + s33 + 26*x_194 + 16*x_194^2 + 26*x_256 + 16*x_256^2 }-> s34 :|: s32 >= 0, s32 <= 4 * x_194 + 1, s33 >= 0, s33 <= 4 * x_256 + 1, s34 >= 0, s34 <= 1 + s32 + s33, z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ -6 + s35 + -6*z' + 16*z'^2 }-> s36 :|: s35 >= 0, s35 <= 4 * (z' - 1) + 1, s36 >= 0, s36 <= 1 + s35, z' - 1 >= 0 encode_norm(z') -{ -6 + s37 + s38 + -6*z' + 16*z'^2 }-> s39 :|: s37 >= 0, s37 <= 4 * (z' - 1) + 1, s38 >= 0, s38 <= s37, s39 >= 0, s39 <= s38, z' - 1 >= 0 encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 6 + s41 + s42 + 26*x_197 + 16*x_197^2 + 26*x_257 + 16*x_257^2 }-> s43 :|: s40 >= 0, s40 <= 4 * x_197 + 1, s41 >= 0, s41 <= 4 * x_257 + 1, s42 >= 0, s42 <= s40 + s41 + 1, s43 >= 0, s43 <= s42, x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 6 + s45 + s46 + 26*x_198 + 16*x_198^2 + 26*x_258 + 16*x_258^2 }-> s47 :|: s44 >= 0, s44 <= 4 * x_198 + 1, s45 >= 0, s45 <= 4 * x_258 + 1, s46 >= 0, s46 <= s44, s47 >= 0, s47 <= s46, x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 5 + s55 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s56 :|: s54 >= 0, s54 <= 4 * z' + 1, s55 >= 0, s55 <= 4 * z'' + 1, s56 >= 0, s56 <= s54, z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2 + 26*z' + 16*z'^2 }-> 1 + s50 :|: s50 >= 0, s50 <= 4 * z' + 1, z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] encode_rem: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [1 + 4*z'] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 4*z' + 4*z'' ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 6 + s10 + s11 + 26*x_1' + 16*x_1'^2 + 26*x_2' + 16*x_2'^2 }-> s12 :|: s10 >= 0, s10 <= 4 * x_1' + 1, s11 >= 0, s11 <= 4 * x_2' + 1, s12 >= 0, s12 <= 1 + s10 + s11, x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 16 + s13 + -38*z' + 16*z'^2 }-> s14 :|: s13 >= 0, s13 <= 4 * (z' - 2) + 1, s14 >= 0, s14 <= 1 + s13, z' - 2 >= 0 encArg(z') -{ 16 + s15 + s16 + -38*z' + 16*z'^2 }-> s17 :|: s15 >= 0, s15 <= 4 * (z' - 2) + 1, s16 >= 0, s16 <= s15, s17 >= 0, s17 <= s16, z' - 2 >= 0 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 6 + s19 + s20 + 26*x_12 + 16*x_12^2 + 26*x_2'' + 16*x_2''^2 }-> s21 :|: s18 >= 0, s18 <= 4 * x_12 + 1, s19 >= 0, s19 <= 4 * x_2'' + 1, s20 >= 0, s20 <= s18 + s19 + 1, s21 >= 0, s21 <= s20, z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 6 + s23 + s24 + 26*x_13 + 16*x_13^2 + 26*x_21 + 16*x_21^2 }-> s25 :|: s22 >= 0, s22 <= 4 * x_13 + 1, s23 >= 0, s23 <= 4 * x_21 + 1, s24 >= 0, s24 <= s22, s25 >= 0, s25 <= s24, z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 5 + s27 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s28 :|: s26 >= 0, s26 <= 4 * x_1 + 1, s27 >= 0, s27 <= 4 * x_2 + 1, s28 >= 0, s28 <= s26 + s27 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 5 + s30 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s31 :|: s29 >= 0, s29 <= 4 * x_1 + 1, s30 >= 0, s30 <= 4 * x_2 + 1, s31 >= 0, s31 <= s29, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ -8 + -6*z' + 16*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 4 * (z' - 1) + 1, z' - 1 >= 0 encArg(z') -{ 4 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 4 * x_1 + 1, s8 >= 0, s8 <= 4 * x_2 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 5 + s52 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s53 :|: s51 >= 0, s51 <= 4 * z' + 1, s52 >= 0, s52 <= 4 * z'' + 1, s53 >= 0, s53 <= s51 + s52 + 1, z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> 1 + s48 + s49 :|: s48 >= 0, s48 <= 4 * z' + 1, s49 >= 0, s49 <= 4 * z'' + 1, z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 6 + s32 + s33 + 26*x_194 + 16*x_194^2 + 26*x_256 + 16*x_256^2 }-> s34 :|: s32 >= 0, s32 <= 4 * x_194 + 1, s33 >= 0, s33 <= 4 * x_256 + 1, s34 >= 0, s34 <= 1 + s32 + s33, z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ -6 + s35 + -6*z' + 16*z'^2 }-> s36 :|: s35 >= 0, s35 <= 4 * (z' - 1) + 1, s36 >= 0, s36 <= 1 + s35, z' - 1 >= 0 encode_norm(z') -{ -6 + s37 + s38 + -6*z' + 16*z'^2 }-> s39 :|: s37 >= 0, s37 <= 4 * (z' - 1) + 1, s38 >= 0, s38 <= s37, s39 >= 0, s39 <= s38, z' - 1 >= 0 encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 6 + s41 + s42 + 26*x_197 + 16*x_197^2 + 26*x_257 + 16*x_257^2 }-> s43 :|: s40 >= 0, s40 <= 4 * x_197 + 1, s41 >= 0, s41 <= 4 * x_257 + 1, s42 >= 0, s42 <= s40 + s41 + 1, s43 >= 0, s43 <= s42, x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 6 + s45 + s46 + 26*x_198 + 16*x_198^2 + 26*x_258 + 16*x_258^2 }-> s47 :|: s44 >= 0, s44 <= 4 * x_198 + 1, s45 >= 0, s45 <= 4 * x_258 + 1, s46 >= 0, s46 <= s44, s47 >= 0, s47 <= s46, x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 5 + s55 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s56 :|: s54 >= 0, s54 <= 4 * z' + 1, s55 >= 0, s55 <= 4 * z'' + 1, s56 >= 0, s56 <= s54, z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2 + 26*z' + 16*z'^2 }-> 1 + s50 :|: s50 >= 0, s50 <= 4 * z' + 1, z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_g}, {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] encode_rem: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [1 + 4*z'] encode_g: runtime: ?, size: O(n^1) [3 + 4*z' + 4*z''] ---------------------------------------- (65) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 6 + s10 + s11 + 26*x_1' + 16*x_1'^2 + 26*x_2' + 16*x_2'^2 }-> s12 :|: s10 >= 0, s10 <= 4 * x_1' + 1, s11 >= 0, s11 <= 4 * x_2' + 1, s12 >= 0, s12 <= 1 + s10 + s11, x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 16 + s13 + -38*z' + 16*z'^2 }-> s14 :|: s13 >= 0, s13 <= 4 * (z' - 2) + 1, s14 >= 0, s14 <= 1 + s13, z' - 2 >= 0 encArg(z') -{ 16 + s15 + s16 + -38*z' + 16*z'^2 }-> s17 :|: s15 >= 0, s15 <= 4 * (z' - 2) + 1, s16 >= 0, s16 <= s15, s17 >= 0, s17 <= s16, z' - 2 >= 0 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 6 + s19 + s20 + 26*x_12 + 16*x_12^2 + 26*x_2'' + 16*x_2''^2 }-> s21 :|: s18 >= 0, s18 <= 4 * x_12 + 1, s19 >= 0, s19 <= 4 * x_2'' + 1, s20 >= 0, s20 <= s18 + s19 + 1, s21 >= 0, s21 <= s20, z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 6 + s23 + s24 + 26*x_13 + 16*x_13^2 + 26*x_21 + 16*x_21^2 }-> s25 :|: s22 >= 0, s22 <= 4 * x_13 + 1, s23 >= 0, s23 <= 4 * x_21 + 1, s24 >= 0, s24 <= s22, s25 >= 0, s25 <= s24, z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 5 + s27 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s28 :|: s26 >= 0, s26 <= 4 * x_1 + 1, s27 >= 0, s27 <= 4 * x_2 + 1, s28 >= 0, s28 <= s26 + s27 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 5 + s30 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s31 :|: s29 >= 0, s29 <= 4 * x_1 + 1, s30 >= 0, s30 <= 4 * x_2 + 1, s31 >= 0, s31 <= s29, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ -8 + -6*z' + 16*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 4 * (z' - 1) + 1, z' - 1 >= 0 encArg(z') -{ 4 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 4 * x_1 + 1, s8 >= 0, s8 <= 4 * x_2 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 5 + s52 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s53 :|: s51 >= 0, s51 <= 4 * z' + 1, s52 >= 0, s52 <= 4 * z'' + 1, s53 >= 0, s53 <= s51 + s52 + 1, z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> 1 + s48 + s49 :|: s48 >= 0, s48 <= 4 * z' + 1, s49 >= 0, s49 <= 4 * z'' + 1, z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 6 + s32 + s33 + 26*x_194 + 16*x_194^2 + 26*x_256 + 16*x_256^2 }-> s34 :|: s32 >= 0, s32 <= 4 * x_194 + 1, s33 >= 0, s33 <= 4 * x_256 + 1, s34 >= 0, s34 <= 1 + s32 + s33, z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ -6 + s35 + -6*z' + 16*z'^2 }-> s36 :|: s35 >= 0, s35 <= 4 * (z' - 1) + 1, s36 >= 0, s36 <= 1 + s35, z' - 1 >= 0 encode_norm(z') -{ -6 + s37 + s38 + -6*z' + 16*z'^2 }-> s39 :|: s37 >= 0, s37 <= 4 * (z' - 1) + 1, s38 >= 0, s38 <= s37, s39 >= 0, s39 <= s38, z' - 1 >= 0 encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 6 + s41 + s42 + 26*x_197 + 16*x_197^2 + 26*x_257 + 16*x_257^2 }-> s43 :|: s40 >= 0, s40 <= 4 * x_197 + 1, s41 >= 0, s41 <= 4 * x_257 + 1, s42 >= 0, s42 <= s40 + s41 + 1, s43 >= 0, s43 <= s42, x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 6 + s45 + s46 + 26*x_198 + 16*x_198^2 + 26*x_258 + 16*x_258^2 }-> s47 :|: s44 >= 0, s44 <= 4 * x_198 + 1, s45 >= 0, s45 <= 4 * x_258 + 1, s46 >= 0, s46 <= s44, s47 >= 0, s47 <= s46, x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 5 + s55 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s56 :|: s54 >= 0, s54 <= 4 * z' + 1, s55 >= 0, s55 <= 4 * z'' + 1, s56 >= 0, s56 <= s54, z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2 + 26*z' + 16*z'^2 }-> 1 + s50 :|: s50 >= 0, s50 <= 4 * z' + 1, z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] encode_rem: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [1 + 4*z'] encode_g: runtime: O(n^2) [4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2], size: O(n^1) [3 + 4*z' + 4*z''] ---------------------------------------- (67) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 6 + s10 + s11 + 26*x_1' + 16*x_1'^2 + 26*x_2' + 16*x_2'^2 }-> s12 :|: s10 >= 0, s10 <= 4 * x_1' + 1, s11 >= 0, s11 <= 4 * x_2' + 1, s12 >= 0, s12 <= 1 + s10 + s11, x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 16 + s13 + -38*z' + 16*z'^2 }-> s14 :|: s13 >= 0, s13 <= 4 * (z' - 2) + 1, s14 >= 0, s14 <= 1 + s13, z' - 2 >= 0 encArg(z') -{ 16 + s15 + s16 + -38*z' + 16*z'^2 }-> s17 :|: s15 >= 0, s15 <= 4 * (z' - 2) + 1, s16 >= 0, s16 <= s15, s17 >= 0, s17 <= s16, z' - 2 >= 0 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 6 + s19 + s20 + 26*x_12 + 16*x_12^2 + 26*x_2'' + 16*x_2''^2 }-> s21 :|: s18 >= 0, s18 <= 4 * x_12 + 1, s19 >= 0, s19 <= 4 * x_2'' + 1, s20 >= 0, s20 <= s18 + s19 + 1, s21 >= 0, s21 <= s20, z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 6 + s23 + s24 + 26*x_13 + 16*x_13^2 + 26*x_21 + 16*x_21^2 }-> s25 :|: s22 >= 0, s22 <= 4 * x_13 + 1, s23 >= 0, s23 <= 4 * x_21 + 1, s24 >= 0, s24 <= s22, s25 >= 0, s25 <= s24, z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 5 + s27 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s28 :|: s26 >= 0, s26 <= 4 * x_1 + 1, s27 >= 0, s27 <= 4 * x_2 + 1, s28 >= 0, s28 <= s26 + s27 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 5 + s30 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s31 :|: s29 >= 0, s29 <= 4 * x_1 + 1, s30 >= 0, s30 <= 4 * x_2 + 1, s31 >= 0, s31 <= s29, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ -8 + -6*z' + 16*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 4 * (z' - 1) + 1, z' - 1 >= 0 encArg(z') -{ 4 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 4 * x_1 + 1, s8 >= 0, s8 <= 4 * x_2 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 5 + s52 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s53 :|: s51 >= 0, s51 <= 4 * z' + 1, s52 >= 0, s52 <= 4 * z'' + 1, s53 >= 0, s53 <= s51 + s52 + 1, z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> 1 + s48 + s49 :|: s48 >= 0, s48 <= 4 * z' + 1, s49 >= 0, s49 <= 4 * z'' + 1, z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 6 + s32 + s33 + 26*x_194 + 16*x_194^2 + 26*x_256 + 16*x_256^2 }-> s34 :|: s32 >= 0, s32 <= 4 * x_194 + 1, s33 >= 0, s33 <= 4 * x_256 + 1, s34 >= 0, s34 <= 1 + s32 + s33, z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ -6 + s35 + -6*z' + 16*z'^2 }-> s36 :|: s35 >= 0, s35 <= 4 * (z' - 1) + 1, s36 >= 0, s36 <= 1 + s35, z' - 1 >= 0 encode_norm(z') -{ -6 + s37 + s38 + -6*z' + 16*z'^2 }-> s39 :|: s37 >= 0, s37 <= 4 * (z' - 1) + 1, s38 >= 0, s38 <= s37, s39 >= 0, s39 <= s38, z' - 1 >= 0 encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 6 + s41 + s42 + 26*x_197 + 16*x_197^2 + 26*x_257 + 16*x_257^2 }-> s43 :|: s40 >= 0, s40 <= 4 * x_197 + 1, s41 >= 0, s41 <= 4 * x_257 + 1, s42 >= 0, s42 <= s40 + s41 + 1, s43 >= 0, s43 <= s42, x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 6 + s45 + s46 + 26*x_198 + 16*x_198^2 + 26*x_258 + 16*x_258^2 }-> s47 :|: s44 >= 0, s44 <= 4 * x_198 + 1, s45 >= 0, s45 <= 4 * x_258 + 1, s46 >= 0, s46 <= s44, s47 >= 0, s47 <= s46, x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 5 + s55 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s56 :|: s54 >= 0, s54 <= 4 * z' + 1, s55 >= 0, s55 <= 4 * z'' + 1, s56 >= 0, s56 <= s54, z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2 + 26*z' + 16*z'^2 }-> 1 + s50 :|: s50 >= 0, s50 <= 4 * z' + 1, z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] encode_rem: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [1 + 4*z'] encode_g: runtime: O(n^2) [4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2], size: O(n^1) [3 + 4*z' + 4*z''] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: encode_norm after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4*z' ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 6 + s10 + s11 + 26*x_1' + 16*x_1'^2 + 26*x_2' + 16*x_2'^2 }-> s12 :|: s10 >= 0, s10 <= 4 * x_1' + 1, s11 >= 0, s11 <= 4 * x_2' + 1, s12 >= 0, s12 <= 1 + s10 + s11, x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 16 + s13 + -38*z' + 16*z'^2 }-> s14 :|: s13 >= 0, s13 <= 4 * (z' - 2) + 1, s14 >= 0, s14 <= 1 + s13, z' - 2 >= 0 encArg(z') -{ 16 + s15 + s16 + -38*z' + 16*z'^2 }-> s17 :|: s15 >= 0, s15 <= 4 * (z' - 2) + 1, s16 >= 0, s16 <= s15, s17 >= 0, s17 <= s16, z' - 2 >= 0 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 6 + s19 + s20 + 26*x_12 + 16*x_12^2 + 26*x_2'' + 16*x_2''^2 }-> s21 :|: s18 >= 0, s18 <= 4 * x_12 + 1, s19 >= 0, s19 <= 4 * x_2'' + 1, s20 >= 0, s20 <= s18 + s19 + 1, s21 >= 0, s21 <= s20, z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 6 + s23 + s24 + 26*x_13 + 16*x_13^2 + 26*x_21 + 16*x_21^2 }-> s25 :|: s22 >= 0, s22 <= 4 * x_13 + 1, s23 >= 0, s23 <= 4 * x_21 + 1, s24 >= 0, s24 <= s22, s25 >= 0, s25 <= s24, z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 5 + s27 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s28 :|: s26 >= 0, s26 <= 4 * x_1 + 1, s27 >= 0, s27 <= 4 * x_2 + 1, s28 >= 0, s28 <= s26 + s27 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 5 + s30 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s31 :|: s29 >= 0, s29 <= 4 * x_1 + 1, s30 >= 0, s30 <= 4 * x_2 + 1, s31 >= 0, s31 <= s29, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ -8 + -6*z' + 16*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 4 * (z' - 1) + 1, z' - 1 >= 0 encArg(z') -{ 4 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 4 * x_1 + 1, s8 >= 0, s8 <= 4 * x_2 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 5 + s52 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s53 :|: s51 >= 0, s51 <= 4 * z' + 1, s52 >= 0, s52 <= 4 * z'' + 1, s53 >= 0, s53 <= s51 + s52 + 1, z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> 1 + s48 + s49 :|: s48 >= 0, s48 <= 4 * z' + 1, s49 >= 0, s49 <= 4 * z'' + 1, z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 6 + s32 + s33 + 26*x_194 + 16*x_194^2 + 26*x_256 + 16*x_256^2 }-> s34 :|: s32 >= 0, s32 <= 4 * x_194 + 1, s33 >= 0, s33 <= 4 * x_256 + 1, s34 >= 0, s34 <= 1 + s32 + s33, z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ -6 + s35 + -6*z' + 16*z'^2 }-> s36 :|: s35 >= 0, s35 <= 4 * (z' - 1) + 1, s36 >= 0, s36 <= 1 + s35, z' - 1 >= 0 encode_norm(z') -{ -6 + s37 + s38 + -6*z' + 16*z'^2 }-> s39 :|: s37 >= 0, s37 <= 4 * (z' - 1) + 1, s38 >= 0, s38 <= s37, s39 >= 0, s39 <= s38, z' - 1 >= 0 encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 6 + s41 + s42 + 26*x_197 + 16*x_197^2 + 26*x_257 + 16*x_257^2 }-> s43 :|: s40 >= 0, s40 <= 4 * x_197 + 1, s41 >= 0, s41 <= 4 * x_257 + 1, s42 >= 0, s42 <= s40 + s41 + 1, s43 >= 0, s43 <= s42, x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 6 + s45 + s46 + 26*x_198 + 16*x_198^2 + 26*x_258 + 16*x_258^2 }-> s47 :|: s44 >= 0, s44 <= 4 * x_198 + 1, s45 >= 0, s45 <= 4 * x_258 + 1, s46 >= 0, s46 <= s44, s47 >= 0, s47 <= s46, x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 5 + s55 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s56 :|: s54 >= 0, s54 <= 4 * z' + 1, s55 >= 0, s55 <= 4 * z'' + 1, s56 >= 0, s56 <= s54, z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2 + 26*z' + 16*z'^2 }-> 1 + s50 :|: s50 >= 0, s50 <= 4 * z' + 1, z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_norm}, {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] encode_rem: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [1 + 4*z'] encode_g: runtime: O(n^2) [4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2], size: O(n^1) [3 + 4*z' + 4*z''] encode_norm: runtime: ?, size: O(n^1) [4*z'] ---------------------------------------- (71) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_norm after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 27 + 186*z' + 128*z'^2 ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 6 + s10 + s11 + 26*x_1' + 16*x_1'^2 + 26*x_2' + 16*x_2'^2 }-> s12 :|: s10 >= 0, s10 <= 4 * x_1' + 1, s11 >= 0, s11 <= 4 * x_2' + 1, s12 >= 0, s12 <= 1 + s10 + s11, x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 16 + s13 + -38*z' + 16*z'^2 }-> s14 :|: s13 >= 0, s13 <= 4 * (z' - 2) + 1, s14 >= 0, s14 <= 1 + s13, z' - 2 >= 0 encArg(z') -{ 16 + s15 + s16 + -38*z' + 16*z'^2 }-> s17 :|: s15 >= 0, s15 <= 4 * (z' - 2) + 1, s16 >= 0, s16 <= s15, s17 >= 0, s17 <= s16, z' - 2 >= 0 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 6 + s19 + s20 + 26*x_12 + 16*x_12^2 + 26*x_2'' + 16*x_2''^2 }-> s21 :|: s18 >= 0, s18 <= 4 * x_12 + 1, s19 >= 0, s19 <= 4 * x_2'' + 1, s20 >= 0, s20 <= s18 + s19 + 1, s21 >= 0, s21 <= s20, z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 6 + s23 + s24 + 26*x_13 + 16*x_13^2 + 26*x_21 + 16*x_21^2 }-> s25 :|: s22 >= 0, s22 <= 4 * x_13 + 1, s23 >= 0, s23 <= 4 * x_21 + 1, s24 >= 0, s24 <= s22, s25 >= 0, s25 <= s24, z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 5 + s27 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s28 :|: s26 >= 0, s26 <= 4 * x_1 + 1, s27 >= 0, s27 <= 4 * x_2 + 1, s28 >= 0, s28 <= s26 + s27 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 5 + s30 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s31 :|: s29 >= 0, s29 <= 4 * x_1 + 1, s30 >= 0, s30 <= 4 * x_2 + 1, s31 >= 0, s31 <= s29, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ -8 + -6*z' + 16*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 4 * (z' - 1) + 1, z' - 1 >= 0 encArg(z') -{ 4 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 4 * x_1 + 1, s8 >= 0, s8 <= 4 * x_2 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 5 + s52 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s53 :|: s51 >= 0, s51 <= 4 * z' + 1, s52 >= 0, s52 <= 4 * z'' + 1, s53 >= 0, s53 <= s51 + s52 + 1, z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> 1 + s48 + s49 :|: s48 >= 0, s48 <= 4 * z' + 1, s49 >= 0, s49 <= 4 * z'' + 1, z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 6 + s32 + s33 + 26*x_194 + 16*x_194^2 + 26*x_256 + 16*x_256^2 }-> s34 :|: s32 >= 0, s32 <= 4 * x_194 + 1, s33 >= 0, s33 <= 4 * x_256 + 1, s34 >= 0, s34 <= 1 + s32 + s33, z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ -6 + s35 + -6*z' + 16*z'^2 }-> s36 :|: s35 >= 0, s35 <= 4 * (z' - 1) + 1, s36 >= 0, s36 <= 1 + s35, z' - 1 >= 0 encode_norm(z') -{ -6 + s37 + s38 + -6*z' + 16*z'^2 }-> s39 :|: s37 >= 0, s37 <= 4 * (z' - 1) + 1, s38 >= 0, s38 <= s37, s39 >= 0, s39 <= s38, z' - 1 >= 0 encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 6 + s41 + s42 + 26*x_197 + 16*x_197^2 + 26*x_257 + 16*x_257^2 }-> s43 :|: s40 >= 0, s40 <= 4 * x_197 + 1, s41 >= 0, s41 <= 4 * x_257 + 1, s42 >= 0, s42 <= s40 + s41 + 1, s43 >= 0, s43 <= s42, x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 6 + s45 + s46 + 26*x_198 + 16*x_198^2 + 26*x_258 + 16*x_258^2 }-> s47 :|: s44 >= 0, s44 <= 4 * x_198 + 1, s45 >= 0, s45 <= 4 * x_258 + 1, s46 >= 0, s46 <= s44, s47 >= 0, s47 <= s46, x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 5 + s55 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s56 :|: s54 >= 0, s54 <= 4 * z' + 1, s55 >= 0, s55 <= 4 * z'' + 1, s56 >= 0, s56 <= s54, z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2 + 26*z' + 16*z'^2 }-> 1 + s50 :|: s50 >= 0, s50 <= 4 * z' + 1, z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] encode_rem: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [1 + 4*z'] encode_g: runtime: O(n^2) [4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2], size: O(n^1) [3 + 4*z' + 4*z''] encode_norm: runtime: O(n^2) [27 + 186*z' + 128*z'^2], size: O(n^1) [4*z'] ---------------------------------------- (73) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 6 + s10 + s11 + 26*x_1' + 16*x_1'^2 + 26*x_2' + 16*x_2'^2 }-> s12 :|: s10 >= 0, s10 <= 4 * x_1' + 1, s11 >= 0, s11 <= 4 * x_2' + 1, s12 >= 0, s12 <= 1 + s10 + s11, x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 16 + s13 + -38*z' + 16*z'^2 }-> s14 :|: s13 >= 0, s13 <= 4 * (z' - 2) + 1, s14 >= 0, s14 <= 1 + s13, z' - 2 >= 0 encArg(z') -{ 16 + s15 + s16 + -38*z' + 16*z'^2 }-> s17 :|: s15 >= 0, s15 <= 4 * (z' - 2) + 1, s16 >= 0, s16 <= s15, s17 >= 0, s17 <= s16, z' - 2 >= 0 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 6 + s19 + s20 + 26*x_12 + 16*x_12^2 + 26*x_2'' + 16*x_2''^2 }-> s21 :|: s18 >= 0, s18 <= 4 * x_12 + 1, s19 >= 0, s19 <= 4 * x_2'' + 1, s20 >= 0, s20 <= s18 + s19 + 1, s21 >= 0, s21 <= s20, z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 6 + s23 + s24 + 26*x_13 + 16*x_13^2 + 26*x_21 + 16*x_21^2 }-> s25 :|: s22 >= 0, s22 <= 4 * x_13 + 1, s23 >= 0, s23 <= 4 * x_21 + 1, s24 >= 0, s24 <= s22, s25 >= 0, s25 <= s24, z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 5 + s27 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s28 :|: s26 >= 0, s26 <= 4 * x_1 + 1, s27 >= 0, s27 <= 4 * x_2 + 1, s28 >= 0, s28 <= s26 + s27 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 5 + s30 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s31 :|: s29 >= 0, s29 <= 4 * x_1 + 1, s30 >= 0, s30 <= 4 * x_2 + 1, s31 >= 0, s31 <= s29, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ -8 + -6*z' + 16*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 4 * (z' - 1) + 1, z' - 1 >= 0 encArg(z') -{ 4 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 4 * x_1 + 1, s8 >= 0, s8 <= 4 * x_2 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 5 + s52 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s53 :|: s51 >= 0, s51 <= 4 * z' + 1, s52 >= 0, s52 <= 4 * z'' + 1, s53 >= 0, s53 <= s51 + s52 + 1, z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> 1 + s48 + s49 :|: s48 >= 0, s48 <= 4 * z' + 1, s49 >= 0, s49 <= 4 * z'' + 1, z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 6 + s32 + s33 + 26*x_194 + 16*x_194^2 + 26*x_256 + 16*x_256^2 }-> s34 :|: s32 >= 0, s32 <= 4 * x_194 + 1, s33 >= 0, s33 <= 4 * x_256 + 1, s34 >= 0, s34 <= 1 + s32 + s33, z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ -6 + s35 + -6*z' + 16*z'^2 }-> s36 :|: s35 >= 0, s35 <= 4 * (z' - 1) + 1, s36 >= 0, s36 <= 1 + s35, z' - 1 >= 0 encode_norm(z') -{ -6 + s37 + s38 + -6*z' + 16*z'^2 }-> s39 :|: s37 >= 0, s37 <= 4 * (z' - 1) + 1, s38 >= 0, s38 <= s37, s39 >= 0, s39 <= s38, z' - 1 >= 0 encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 6 + s41 + s42 + 26*x_197 + 16*x_197^2 + 26*x_257 + 16*x_257^2 }-> s43 :|: s40 >= 0, s40 <= 4 * x_197 + 1, s41 >= 0, s41 <= 4 * x_257 + 1, s42 >= 0, s42 <= s40 + s41 + 1, s43 >= 0, s43 <= s42, x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 6 + s45 + s46 + 26*x_198 + 16*x_198^2 + 26*x_258 + 16*x_258^2 }-> s47 :|: s44 >= 0, s44 <= 4 * x_198 + 1, s45 >= 0, s45 <= 4 * x_258 + 1, s46 >= 0, s46 <= s44, s47 >= 0, s47 <= s46, x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 5 + s55 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s56 :|: s54 >= 0, s54 <= 4 * z' + 1, s55 >= 0, s55 <= 4 * z'' + 1, s56 >= 0, s56 <= s54, z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2 + 26*z' + 16*z'^2 }-> 1 + s50 :|: s50 >= 0, s50 <= 4 * z' + 1, z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] encode_rem: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [1 + 4*z'] encode_g: runtime: O(n^2) [4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2], size: O(n^1) [3 + 4*z' + 4*z''] encode_norm: runtime: O(n^2) [27 + 186*z' + 128*z'^2], size: O(n^1) [4*z'] ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 4*z' + 4*z'' ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 6 + s10 + s11 + 26*x_1' + 16*x_1'^2 + 26*x_2' + 16*x_2'^2 }-> s12 :|: s10 >= 0, s10 <= 4 * x_1' + 1, s11 >= 0, s11 <= 4 * x_2' + 1, s12 >= 0, s12 <= 1 + s10 + s11, x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 16 + s13 + -38*z' + 16*z'^2 }-> s14 :|: s13 >= 0, s13 <= 4 * (z' - 2) + 1, s14 >= 0, s14 <= 1 + s13, z' - 2 >= 0 encArg(z') -{ 16 + s15 + s16 + -38*z' + 16*z'^2 }-> s17 :|: s15 >= 0, s15 <= 4 * (z' - 2) + 1, s16 >= 0, s16 <= s15, s17 >= 0, s17 <= s16, z' - 2 >= 0 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 6 + s19 + s20 + 26*x_12 + 16*x_12^2 + 26*x_2'' + 16*x_2''^2 }-> s21 :|: s18 >= 0, s18 <= 4 * x_12 + 1, s19 >= 0, s19 <= 4 * x_2'' + 1, s20 >= 0, s20 <= s18 + s19 + 1, s21 >= 0, s21 <= s20, z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 6 + s23 + s24 + 26*x_13 + 16*x_13^2 + 26*x_21 + 16*x_21^2 }-> s25 :|: s22 >= 0, s22 <= 4 * x_13 + 1, s23 >= 0, s23 <= 4 * x_21 + 1, s24 >= 0, s24 <= s22, s25 >= 0, s25 <= s24, z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 5 + s27 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s28 :|: s26 >= 0, s26 <= 4 * x_1 + 1, s27 >= 0, s27 <= 4 * x_2 + 1, s28 >= 0, s28 <= s26 + s27 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 5 + s30 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s31 :|: s29 >= 0, s29 <= 4 * x_1 + 1, s30 >= 0, s30 <= 4 * x_2 + 1, s31 >= 0, s31 <= s29, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ -8 + -6*z' + 16*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 4 * (z' - 1) + 1, z' - 1 >= 0 encArg(z') -{ 4 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 4 * x_1 + 1, s8 >= 0, s8 <= 4 * x_2 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 5 + s52 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s53 :|: s51 >= 0, s51 <= 4 * z' + 1, s52 >= 0, s52 <= 4 * z'' + 1, s53 >= 0, s53 <= s51 + s52 + 1, z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> 1 + s48 + s49 :|: s48 >= 0, s48 <= 4 * z' + 1, s49 >= 0, s49 <= 4 * z'' + 1, z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 6 + s32 + s33 + 26*x_194 + 16*x_194^2 + 26*x_256 + 16*x_256^2 }-> s34 :|: s32 >= 0, s32 <= 4 * x_194 + 1, s33 >= 0, s33 <= 4 * x_256 + 1, s34 >= 0, s34 <= 1 + s32 + s33, z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ -6 + s35 + -6*z' + 16*z'^2 }-> s36 :|: s35 >= 0, s35 <= 4 * (z' - 1) + 1, s36 >= 0, s36 <= 1 + s35, z' - 1 >= 0 encode_norm(z') -{ -6 + s37 + s38 + -6*z' + 16*z'^2 }-> s39 :|: s37 >= 0, s37 <= 4 * (z' - 1) + 1, s38 >= 0, s38 <= s37, s39 >= 0, s39 <= s38, z' - 1 >= 0 encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 6 + s41 + s42 + 26*x_197 + 16*x_197^2 + 26*x_257 + 16*x_257^2 }-> s43 :|: s40 >= 0, s40 <= 4 * x_197 + 1, s41 >= 0, s41 <= 4 * x_257 + 1, s42 >= 0, s42 <= s40 + s41 + 1, s43 >= 0, s43 <= s42, x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 6 + s45 + s46 + 26*x_198 + 16*x_198^2 + 26*x_258 + 16*x_258^2 }-> s47 :|: s44 >= 0, s44 <= 4 * x_198 + 1, s45 >= 0, s45 <= 4 * x_258 + 1, s46 >= 0, s46 <= s44, s47 >= 0, s47 <= s46, x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 5 + s55 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s56 :|: s54 >= 0, s54 <= 4 * z' + 1, s55 >= 0, s55 <= 4 * z'' + 1, s56 >= 0, s56 <= s54, z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2 + 26*z' + 16*z'^2 }-> 1 + s50 :|: s50 >= 0, s50 <= 4 * z' + 1, z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_f}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] encode_rem: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [1 + 4*z'] encode_g: runtime: O(n^2) [4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2], size: O(n^1) [3 + 4*z' + 4*z''] encode_norm: runtime: O(n^2) [27 + 186*z' + 128*z'^2], size: O(n^1) [4*z'] encode_f: runtime: ?, size: O(n^1) [3 + 4*z' + 4*z''] ---------------------------------------- (77) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2 ---------------------------------------- (78) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 6 + s10 + s11 + 26*x_1' + 16*x_1'^2 + 26*x_2' + 16*x_2'^2 }-> s12 :|: s10 >= 0, s10 <= 4 * x_1' + 1, s11 >= 0, s11 <= 4 * x_2' + 1, s12 >= 0, s12 <= 1 + s10 + s11, x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 16 + s13 + -38*z' + 16*z'^2 }-> s14 :|: s13 >= 0, s13 <= 4 * (z' - 2) + 1, s14 >= 0, s14 <= 1 + s13, z' - 2 >= 0 encArg(z') -{ 16 + s15 + s16 + -38*z' + 16*z'^2 }-> s17 :|: s15 >= 0, s15 <= 4 * (z' - 2) + 1, s16 >= 0, s16 <= s15, s17 >= 0, s17 <= s16, z' - 2 >= 0 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 6 + s19 + s20 + 26*x_12 + 16*x_12^2 + 26*x_2'' + 16*x_2''^2 }-> s21 :|: s18 >= 0, s18 <= 4 * x_12 + 1, s19 >= 0, s19 <= 4 * x_2'' + 1, s20 >= 0, s20 <= s18 + s19 + 1, s21 >= 0, s21 <= s20, z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 6 + s23 + s24 + 26*x_13 + 16*x_13^2 + 26*x_21 + 16*x_21^2 }-> s25 :|: s22 >= 0, s22 <= 4 * x_13 + 1, s23 >= 0, s23 <= 4 * x_21 + 1, s24 >= 0, s24 <= s22, s25 >= 0, s25 <= s24, z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 5 + s27 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s28 :|: s26 >= 0, s26 <= 4 * x_1 + 1, s27 >= 0, s27 <= 4 * x_2 + 1, s28 >= 0, s28 <= s26 + s27 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 5 + s30 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s31 :|: s29 >= 0, s29 <= 4 * x_1 + 1, s30 >= 0, s30 <= 4 * x_2 + 1, s31 >= 0, s31 <= s29, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ -8 + -6*z' + 16*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 4 * (z' - 1) + 1, z' - 1 >= 0 encArg(z') -{ 4 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 4 * x_1 + 1, s8 >= 0, s8 <= 4 * x_2 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 5 + s52 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s53 :|: s51 >= 0, s51 <= 4 * z' + 1, s52 >= 0, s52 <= 4 * z'' + 1, s53 >= 0, s53 <= s51 + s52 + 1, z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> 1 + s48 + s49 :|: s48 >= 0, s48 <= 4 * z' + 1, s49 >= 0, s49 <= 4 * z'' + 1, z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 6 + s32 + s33 + 26*x_194 + 16*x_194^2 + 26*x_256 + 16*x_256^2 }-> s34 :|: s32 >= 0, s32 <= 4 * x_194 + 1, s33 >= 0, s33 <= 4 * x_256 + 1, s34 >= 0, s34 <= 1 + s32 + s33, z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ -6 + s35 + -6*z' + 16*z'^2 }-> s36 :|: s35 >= 0, s35 <= 4 * (z' - 1) + 1, s36 >= 0, s36 <= 1 + s35, z' - 1 >= 0 encode_norm(z') -{ -6 + s37 + s38 + -6*z' + 16*z'^2 }-> s39 :|: s37 >= 0, s37 <= 4 * (z' - 1) + 1, s38 >= 0, s38 <= s37, s39 >= 0, s39 <= s38, z' - 1 >= 0 encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 6 + s41 + s42 + 26*x_197 + 16*x_197^2 + 26*x_257 + 16*x_257^2 }-> s43 :|: s40 >= 0, s40 <= 4 * x_197 + 1, s41 >= 0, s41 <= 4 * x_257 + 1, s42 >= 0, s42 <= s40 + s41 + 1, s43 >= 0, s43 <= s42, x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 6 + s45 + s46 + 26*x_198 + 16*x_198^2 + 26*x_258 + 16*x_258^2 }-> s47 :|: s44 >= 0, s44 <= 4 * x_198 + 1, s45 >= 0, s45 <= 4 * x_258 + 1, s46 >= 0, s46 <= s44, s47 >= 0, s47 <= s46, x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 5 + s55 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s56 :|: s54 >= 0, s54 <= 4 * z' + 1, s55 >= 0, s55 <= 4 * z'' + 1, s56 >= 0, s56 <= s54, z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2 + 26*z' + 16*z'^2 }-> 1 + s50 :|: s50 >= 0, s50 <= 4 * z' + 1, z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] encode_rem: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [1 + 4*z'] encode_g: runtime: O(n^2) [4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2], size: O(n^1) [3 + 4*z' + 4*z''] encode_norm: runtime: O(n^2) [27 + 186*z' + 128*z'^2], size: O(n^1) [4*z'] encode_f: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [3 + 4*z' + 4*z''] ---------------------------------------- (79) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (80) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 6 + s10 + s11 + 26*x_1' + 16*x_1'^2 + 26*x_2' + 16*x_2'^2 }-> s12 :|: s10 >= 0, s10 <= 4 * x_1' + 1, s11 >= 0, s11 <= 4 * x_2' + 1, s12 >= 0, s12 <= 1 + s10 + s11, x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 16 + s13 + -38*z' + 16*z'^2 }-> s14 :|: s13 >= 0, s13 <= 4 * (z' - 2) + 1, s14 >= 0, s14 <= 1 + s13, z' - 2 >= 0 encArg(z') -{ 16 + s15 + s16 + -38*z' + 16*z'^2 }-> s17 :|: s15 >= 0, s15 <= 4 * (z' - 2) + 1, s16 >= 0, s16 <= s15, s17 >= 0, s17 <= s16, z' - 2 >= 0 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 6 + s19 + s20 + 26*x_12 + 16*x_12^2 + 26*x_2'' + 16*x_2''^2 }-> s21 :|: s18 >= 0, s18 <= 4 * x_12 + 1, s19 >= 0, s19 <= 4 * x_2'' + 1, s20 >= 0, s20 <= s18 + s19 + 1, s21 >= 0, s21 <= s20, z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 6 + s23 + s24 + 26*x_13 + 16*x_13^2 + 26*x_21 + 16*x_21^2 }-> s25 :|: s22 >= 0, s22 <= 4 * x_13 + 1, s23 >= 0, s23 <= 4 * x_21 + 1, s24 >= 0, s24 <= s22, s25 >= 0, s25 <= s24, z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 5 + s27 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s28 :|: s26 >= 0, s26 <= 4 * x_1 + 1, s27 >= 0, s27 <= 4 * x_2 + 1, s28 >= 0, s28 <= s26 + s27 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 5 + s30 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s31 :|: s29 >= 0, s29 <= 4 * x_1 + 1, s30 >= 0, s30 <= 4 * x_2 + 1, s31 >= 0, s31 <= s29, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ -8 + -6*z' + 16*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 4 * (z' - 1) + 1, z' - 1 >= 0 encArg(z') -{ 4 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 4 * x_1 + 1, s8 >= 0, s8 <= 4 * x_2 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 5 + s52 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s53 :|: s51 >= 0, s51 <= 4 * z' + 1, s52 >= 0, s52 <= 4 * z'' + 1, s53 >= 0, s53 <= s51 + s52 + 1, z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> 1 + s48 + s49 :|: s48 >= 0, s48 <= 4 * z' + 1, s49 >= 0, s49 <= 4 * z'' + 1, z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 6 + s32 + s33 + 26*x_194 + 16*x_194^2 + 26*x_256 + 16*x_256^2 }-> s34 :|: s32 >= 0, s32 <= 4 * x_194 + 1, s33 >= 0, s33 <= 4 * x_256 + 1, s34 >= 0, s34 <= 1 + s32 + s33, z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ -6 + s35 + -6*z' + 16*z'^2 }-> s36 :|: s35 >= 0, s35 <= 4 * (z' - 1) + 1, s36 >= 0, s36 <= 1 + s35, z' - 1 >= 0 encode_norm(z') -{ -6 + s37 + s38 + -6*z' + 16*z'^2 }-> s39 :|: s37 >= 0, s37 <= 4 * (z' - 1) + 1, s38 >= 0, s38 <= s37, s39 >= 0, s39 <= s38, z' - 1 >= 0 encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 6 + s41 + s42 + 26*x_197 + 16*x_197^2 + 26*x_257 + 16*x_257^2 }-> s43 :|: s40 >= 0, s40 <= 4 * x_197 + 1, s41 >= 0, s41 <= 4 * x_257 + 1, s42 >= 0, s42 <= s40 + s41 + 1, s43 >= 0, s43 <= s42, x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 6 + s45 + s46 + 26*x_198 + 16*x_198^2 + 26*x_258 + 16*x_258^2 }-> s47 :|: s44 >= 0, s44 <= 4 * x_198 + 1, s45 >= 0, s45 <= 4 * x_258 + 1, s46 >= 0, s46 <= s44, s47 >= 0, s47 <= s46, x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 5 + s55 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s56 :|: s54 >= 0, s54 <= 4 * z' + 1, s55 >= 0, s55 <= 4 * z'' + 1, s56 >= 0, s56 <= s54, z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2 + 26*z' + 16*z'^2 }-> 1 + s50 :|: s50 >= 0, s50 <= 4 * z' + 1, z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] encode_rem: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [1 + 4*z'] encode_g: runtime: O(n^2) [4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2], size: O(n^1) [3 + 4*z' + 4*z''] encode_norm: runtime: O(n^2) [27 + 186*z' + 128*z'^2], size: O(n^1) [4*z'] encode_f: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [3 + 4*z' + 4*z''] ---------------------------------------- (81) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 4*z' ---------------------------------------- (82) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 6 + s10 + s11 + 26*x_1' + 16*x_1'^2 + 26*x_2' + 16*x_2'^2 }-> s12 :|: s10 >= 0, s10 <= 4 * x_1' + 1, s11 >= 0, s11 <= 4 * x_2' + 1, s12 >= 0, s12 <= 1 + s10 + s11, x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 16 + s13 + -38*z' + 16*z'^2 }-> s14 :|: s13 >= 0, s13 <= 4 * (z' - 2) + 1, s14 >= 0, s14 <= 1 + s13, z' - 2 >= 0 encArg(z') -{ 16 + s15 + s16 + -38*z' + 16*z'^2 }-> s17 :|: s15 >= 0, s15 <= 4 * (z' - 2) + 1, s16 >= 0, s16 <= s15, s17 >= 0, s17 <= s16, z' - 2 >= 0 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 6 + s19 + s20 + 26*x_12 + 16*x_12^2 + 26*x_2'' + 16*x_2''^2 }-> s21 :|: s18 >= 0, s18 <= 4 * x_12 + 1, s19 >= 0, s19 <= 4 * x_2'' + 1, s20 >= 0, s20 <= s18 + s19 + 1, s21 >= 0, s21 <= s20, z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 6 + s23 + s24 + 26*x_13 + 16*x_13^2 + 26*x_21 + 16*x_21^2 }-> s25 :|: s22 >= 0, s22 <= 4 * x_13 + 1, s23 >= 0, s23 <= 4 * x_21 + 1, s24 >= 0, s24 <= s22, s25 >= 0, s25 <= s24, z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 5 + s27 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s28 :|: s26 >= 0, s26 <= 4 * x_1 + 1, s27 >= 0, s27 <= 4 * x_2 + 1, s28 >= 0, s28 <= s26 + s27 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 5 + s30 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s31 :|: s29 >= 0, s29 <= 4 * x_1 + 1, s30 >= 0, s30 <= 4 * x_2 + 1, s31 >= 0, s31 <= s29, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ -8 + -6*z' + 16*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 4 * (z' - 1) + 1, z' - 1 >= 0 encArg(z') -{ 4 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 4 * x_1 + 1, s8 >= 0, s8 <= 4 * x_2 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 5 + s52 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s53 :|: s51 >= 0, s51 <= 4 * z' + 1, s52 >= 0, s52 <= 4 * z'' + 1, s53 >= 0, s53 <= s51 + s52 + 1, z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> 1 + s48 + s49 :|: s48 >= 0, s48 <= 4 * z' + 1, s49 >= 0, s49 <= 4 * z'' + 1, z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 6 + s32 + s33 + 26*x_194 + 16*x_194^2 + 26*x_256 + 16*x_256^2 }-> s34 :|: s32 >= 0, s32 <= 4 * x_194 + 1, s33 >= 0, s33 <= 4 * x_256 + 1, s34 >= 0, s34 <= 1 + s32 + s33, z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ -6 + s35 + -6*z' + 16*z'^2 }-> s36 :|: s35 >= 0, s35 <= 4 * (z' - 1) + 1, s36 >= 0, s36 <= 1 + s35, z' - 1 >= 0 encode_norm(z') -{ -6 + s37 + s38 + -6*z' + 16*z'^2 }-> s39 :|: s37 >= 0, s37 <= 4 * (z' - 1) + 1, s38 >= 0, s38 <= s37, s39 >= 0, s39 <= s38, z' - 1 >= 0 encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 6 + s41 + s42 + 26*x_197 + 16*x_197^2 + 26*x_257 + 16*x_257^2 }-> s43 :|: s40 >= 0, s40 <= 4 * x_197 + 1, s41 >= 0, s41 <= 4 * x_257 + 1, s42 >= 0, s42 <= s40 + s41 + 1, s43 >= 0, s43 <= s42, x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 6 + s45 + s46 + 26*x_198 + 16*x_198^2 + 26*x_258 + 16*x_258^2 }-> s47 :|: s44 >= 0, s44 <= 4 * x_198 + 1, s45 >= 0, s45 <= 4 * x_258 + 1, s46 >= 0, s46 <= s44, s47 >= 0, s47 <= s46, x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 5 + s55 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s56 :|: s54 >= 0, s54 <= 4 * z' + 1, s55 >= 0, s55 <= 4 * z'' + 1, s56 >= 0, s56 <= s54, z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2 + 26*z' + 16*z'^2 }-> 1 + s50 :|: s50 >= 0, s50 <= 4 * z' + 1, z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] encode_rem: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [1 + 4*z'] encode_g: runtime: O(n^2) [4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2], size: O(n^1) [3 + 4*z' + 4*z''] encode_norm: runtime: O(n^2) [27 + 186*z' + 128*z'^2], size: O(n^1) [4*z'] encode_f: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [3 + 4*z' + 4*z''] encode_s: runtime: ?, size: O(n^1) [2 + 4*z'] ---------------------------------------- (83) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2 + 26*z' + 16*z'^2 ---------------------------------------- (84) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 2 }-> s1 :|: s1 >= 0, s1 <= 1, z' = 1 + 1 encArg(z') -{ 6 + s10 + s11 + 26*x_1' + 16*x_1'^2 + 26*x_2' + 16*x_2'^2 }-> s12 :|: s10 >= 0, s10 <= 4 * x_1' + 1, s11 >= 0, s11 <= 4 * x_2' + 1, s12 >= 0, s12 <= 1 + s10 + s11, x_2' >= 0, x_1' >= 0, z' = 1 + (1 + x_1' + x_2') encArg(z') -{ 16 + s13 + -38*z' + 16*z'^2 }-> s14 :|: s13 >= 0, s13 <= 4 * (z' - 2) + 1, s14 >= 0, s14 <= 1 + s13, z' - 2 >= 0 encArg(z') -{ 16 + s15 + s16 + -38*z' + 16*z'^2 }-> s17 :|: s15 >= 0, s15 <= 4 * (z' - 2) + 1, s16 >= 0, s16 <= s15, s17 >= 0, s17 <= s16, z' - 2 >= 0 encArg(z') -{ 1 }-> s2 :|: s2 >= 0, s2 <= 0, z' = 1 + 0 encArg(z') -{ 6 + s19 + s20 + 26*x_12 + 16*x_12^2 + 26*x_2'' + 16*x_2''^2 }-> s21 :|: s18 >= 0, s18 <= 4 * x_12 + 1, s19 >= 0, s19 <= 4 * x_2'' + 1, s20 >= 0, s20 <= s18 + s19 + 1, s21 >= 0, s21 <= s20, z' = 1 + (1 + x_12 + x_2''), x_2'' >= 0, x_12 >= 0 encArg(z') -{ 6 + s23 + s24 + 26*x_13 + 16*x_13^2 + 26*x_21 + 16*x_21^2 }-> s25 :|: s22 >= 0, s22 <= 4 * x_13 + 1, s23 >= 0, s23 <= 4 * x_21 + 1, s24 >= 0, s24 <= s22, s25 >= 0, s25 <= s24, z' = 1 + (1 + x_13 + x_21), x_13 >= 0, x_21 >= 0 encArg(z') -{ 5 + s27 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s28 :|: s26 >= 0, s26 <= 4 * x_1 + 1, s27 >= 0, s27 <= 4 * x_2 + 1, s28 >= 0, s28 <= s26 + s27 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0 encArg(z') -{ 5 + s30 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> s31 :|: s29 >= 0, s29 <= 4 * x_1 + 1, s30 >= 0, s30 <= 4 * x_2 + 1, s31 >= 0, s31 <= s29, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ -8 + -6*z' + 16*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 4 * (z' - 1) + 1, z' - 1 >= 0 encArg(z') -{ 4 + 26*x_1 + 16*x_1^2 + 26*x_2 + 16*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 4 * x_1 + 1, s8 >= 0, s8 <= 4 * x_2 + 1, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encode_0 -{ 0 }-> 0 :|: encode_f(z', z'') -{ 5 + s52 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s53 :|: s51 >= 0, s51 <= 4 * z' + 1, s52 >= 0, s52 <= 4 * z'' + 1, s53 >= 0, s53 <= s51 + s52 + 1, z' >= 0, z'' >= 0 encode_f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> 1 + s48 + s49 :|: s48 >= 0, s48 <= 4 * z' + 1, s49 >= 0, s49 <= 4 * z'' + 1, z' >= 0, z'' >= 0 encode_nil -{ 0 }-> 1 :|: encode_nil -{ 0 }-> 0 :|: encode_norm(z') -{ 6 + s32 + s33 + 26*x_194 + 16*x_194^2 + 26*x_256 + 16*x_256^2 }-> s34 :|: s32 >= 0, s32 <= 4 * x_194 + 1, s33 >= 0, s33 <= 4 * x_256 + 1, s34 >= 0, s34 <= 1 + s32 + s33, z' = 1 + x_194 + x_256, x_194 >= 0, x_256 >= 0 encode_norm(z') -{ -6 + s35 + -6*z' + 16*z'^2 }-> s36 :|: s35 >= 0, s35 <= 4 * (z' - 1) + 1, s36 >= 0, s36 <= 1 + s35, z' - 1 >= 0 encode_norm(z') -{ -6 + s37 + s38 + -6*z' + 16*z'^2 }-> s39 :|: s37 >= 0, s37 <= 4 * (z' - 1) + 1, s38 >= 0, s38 <= s37, s39 >= 0, s39 <= s38, z' - 1 >= 0 encode_norm(z') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 1, z' = 1 encode_norm(z') -{ 6 + s41 + s42 + 26*x_197 + 16*x_197^2 + 26*x_257 + 16*x_257^2 }-> s43 :|: s40 >= 0, s40 <= 4 * x_197 + 1, s41 >= 0, s41 <= 4 * x_257 + 1, s42 >= 0, s42 <= s40 + s41 + 1, s43 >= 0, s43 <= s42, x_197 >= 0, x_257 >= 0, z' = 1 + x_197 + x_257 encode_norm(z') -{ 6 + s45 + s46 + 26*x_198 + 16*x_198^2 + 26*x_258 + 16*x_258^2 }-> s47 :|: s44 >= 0, s44 <= 4 * x_198 + 1, s45 >= 0, s45 <= 4 * x_258 + 1, s46 >= 0, s46 <= s44, s47 >= 0, s47 <= s46, x_258 >= 0, z' = 1 + x_198 + x_258, x_198 >= 0 encode_norm(z') -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z' = 0 encode_norm(z') -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0, z' >= 0 encode_norm(z') -{ 0 }-> 0 :|: z' >= 0 encode_rem(z', z'') -{ 5 + s55 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2 }-> s56 :|: s54 >= 0, s54 <= 4 * z' + 1, s55 >= 0, s55 <= 4 * z'' + 1, s56 >= 0, s56 <= s54, z' >= 0, z'' >= 0 encode_rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 2 + 26*z' + 16*z'^2 }-> 1 + s50 :|: s50 >= 0, s50 <= 4 * z' + 1, z' >= 0 f(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 f(z', z'') -{ 2 + y }-> 1 + s + z :|: s >= 0, s <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 1 + z' :|: z' >= 0, z'' = 1 norm(z') -{ 1 }-> 0 :|: z' = 1 norm(z') -{ 0 }-> 0 :|: z' >= 0 norm(z') -{ 2 + x }-> 1 + s'' :|: s'' >= 0, s'' <= x, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 + z'' }-> s' :|: s' >= 0, s' <= x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0 rem(z', z'') -{ 1 }-> 1 :|: z'' >= 0, z' = 1 rem(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 rem(z', z'') -{ 1 }-> 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] rem: runtime: O(n^1) [1 + z''], size: O(n^1) [z'] norm: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] encode_nil: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [1 + 4*z'] encode_rem: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [1 + 4*z'] encode_g: runtime: O(n^2) [4 + 26*z' + 16*z'^2 + 26*z'' + 16*z''^2], size: O(n^1) [3 + 4*z' + 4*z''] encode_norm: runtime: O(n^2) [27 + 186*z' + 128*z'^2], size: O(n^1) [4*z'] encode_f: runtime: O(n^2) [6 + 26*z' + 16*z'^2 + 30*z'' + 16*z''^2], size: O(n^1) [3 + 4*z' + 4*z''] encode_s: runtime: O(n^2) [2 + 26*z' + 16*z'^2], size: O(n^1) [2 + 4*z'] ---------------------------------------- (85) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (86) BOUNDS(1, n^2) ---------------------------------------- (87) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (88) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: norm(nil) -> 0 norm(g(x, y)) -> s(norm(x)) f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) rem(nil, y) -> nil rem(g(x, y), 0) -> g(x, y) rem(g(x, y), s(z)) -> rem(x, z) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(0) -> 0 encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_norm(x_1)) -> norm(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_rem(x_1, x_2)) -> rem(encArg(x_1), encArg(x_2)) encode_norm(x_1) -> norm(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_rem(x_1, x_2) -> rem(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (89) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence rem(g(x, y), s(z)) ->^+ rem(x, z) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / g(x, y), z / s(z)]. The result substitution is [ ]. ---------------------------------------- (90) Complex Obligation (BEST) ---------------------------------------- (91) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: norm(nil) -> 0 norm(g(x, y)) -> s(norm(x)) f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) rem(nil, y) -> nil rem(g(x, y), 0) -> g(x, y) rem(g(x, y), s(z)) -> rem(x, z) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(0) -> 0 encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_norm(x_1)) -> norm(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_rem(x_1, x_2)) -> rem(encArg(x_1), encArg(x_2)) encode_norm(x_1) -> norm(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_rem(x_1, x_2) -> rem(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (92) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (93) BOUNDS(n^1, INF) ---------------------------------------- (94) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: norm(nil) -> 0 norm(g(x, y)) -> s(norm(x)) f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) rem(nil, y) -> nil rem(g(x, y), 0) -> g(x, y) rem(g(x, y), s(z)) -> rem(x, z) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(0) -> 0 encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_norm(x_1)) -> norm(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_rem(x_1, x_2)) -> rem(encArg(x_1), encArg(x_2)) encode_norm(x_1) -> norm(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_rem(x_1, x_2) -> rem(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST