/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 158 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (10) CdtProblem (11) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 285 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 204 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 135 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 133 ms] (20) CdtProblem (21) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (22) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: or(x, x) -> x and(x, x) -> x not(not(x)) -> x not(and(x, y)) -> or(not(x), not(y)) not(or(x, y)) -> and(not(x), not(y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(cons_or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: or(x, x) -> x and(x, x) -> x not(not(x)) -> x not(and(x, y)) -> or(not(x), not(y)) not(or(x, y)) -> and(not(x), not(y)) The (relative) TRS S consists of the following rules: encArg(cons_or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: or(x, x) -> x and(x, x) -> x not(not(x)) -> x not(and(x, y)) -> or(not(x), not(y)) not(or(x, y)) -> and(not(x), not(y)) The (relative) TRS S consists of the following rules: encArg(cons_or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_or(z0, z1)) -> or(encArg(z0), encArg(z1)) encArg(cons_and(z0, z1)) -> and(encArg(z0), encArg(z1)) encArg(cons_not(z0)) -> not(encArg(z0)) encode_or(z0, z1) -> or(encArg(z0), encArg(z1)) encode_and(z0, z1) -> and(encArg(z0), encArg(z1)) encode_not(z0) -> not(encArg(z0)) or(z0, z0) -> z0 and(z0, z0) -> z0 not(not(z0)) -> z0 not(and(z0, z1)) -> or(not(z0), not(z1)) not(or(z0, z1)) -> and(not(z0), not(z1)) Tuples: ENCARG(cons_or(z0, z1)) -> c(OR(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_and(z0, z1)) -> c1(AND(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_not(z0)) -> c2(NOT(encArg(z0)), ENCARG(z0)) ENCODE_OR(z0, z1) -> c3(OR(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_AND(z0, z1) -> c4(AND(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_NOT(z0) -> c5(NOT(encArg(z0)), ENCARG(z0)) OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) S tuples: OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) K tuples:none Defined Rule Symbols: or_2, and_2, not_1, encArg_1, encode_or_2, encode_and_2, encode_not_1 Defined Pair Symbols: ENCARG_1, ENCODE_OR_2, ENCODE_AND_2, ENCODE_NOT_1, OR_2, AND_2, NOT_1 Compound Symbols: c_3, c1_3, c2_2, c3_3, c4_3, c5_2, c6, c7, c8, c9_3, c10_3 ---------------------------------------- (7) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_or(z0, z1)) -> or(encArg(z0), encArg(z1)) encArg(cons_and(z0, z1)) -> and(encArg(z0), encArg(z1)) encArg(cons_not(z0)) -> not(encArg(z0)) encode_or(z0, z1) -> or(encArg(z0), encArg(z1)) encode_and(z0, z1) -> and(encArg(z0), encArg(z1)) encode_not(z0) -> not(encArg(z0)) or(z0, z0) -> z0 and(z0, z0) -> z0 not(not(z0)) -> z0 not(and(z0, z1)) -> or(not(z0), not(z1)) not(or(z0, z1)) -> and(not(z0), not(z1)) Tuples: ENCARG(cons_or(z0, z1)) -> c(OR(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_and(z0, z1)) -> c1(AND(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_not(z0)) -> c2(NOT(encArg(z0)), ENCARG(z0)) OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) ENCODE_OR(z0, z1) -> c11(OR(encArg(z0), encArg(z1))) ENCODE_OR(z0, z1) -> c11(ENCARG(z0)) ENCODE_OR(z0, z1) -> c11(ENCARG(z1)) ENCODE_AND(z0, z1) -> c11(AND(encArg(z0), encArg(z1))) ENCODE_AND(z0, z1) -> c11(ENCARG(z0)) ENCODE_AND(z0, z1) -> c11(ENCARG(z1)) ENCODE_NOT(z0) -> c11(NOT(encArg(z0))) ENCODE_NOT(z0) -> c11(ENCARG(z0)) S tuples: OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) K tuples:none Defined Rule Symbols: or_2, and_2, not_1, encArg_1, encode_or_2, encode_and_2, encode_not_1 Defined Pair Symbols: ENCARG_1, OR_2, AND_2, NOT_1, ENCODE_OR_2, ENCODE_AND_2, ENCODE_NOT_1 Compound Symbols: c_3, c1_3, c2_2, c6, c7, c8, c9_3, c10_3, c11_1 ---------------------------------------- (9) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 5 leading nodes: ENCODE_OR(z0, z1) -> c11(ENCARG(z0)) ENCODE_OR(z0, z1) -> c11(ENCARG(z1)) ENCODE_AND(z0, z1) -> c11(ENCARG(z0)) ENCODE_AND(z0, z1) -> c11(ENCARG(z1)) ENCODE_NOT(z0) -> c11(ENCARG(z0)) ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_or(z0, z1)) -> or(encArg(z0), encArg(z1)) encArg(cons_and(z0, z1)) -> and(encArg(z0), encArg(z1)) encArg(cons_not(z0)) -> not(encArg(z0)) encode_or(z0, z1) -> or(encArg(z0), encArg(z1)) encode_and(z0, z1) -> and(encArg(z0), encArg(z1)) encode_not(z0) -> not(encArg(z0)) or(z0, z0) -> z0 and(z0, z0) -> z0 not(not(z0)) -> z0 not(and(z0, z1)) -> or(not(z0), not(z1)) not(or(z0, z1)) -> and(not(z0), not(z1)) Tuples: ENCARG(cons_or(z0, z1)) -> c(OR(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_and(z0, z1)) -> c1(AND(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_not(z0)) -> c2(NOT(encArg(z0)), ENCARG(z0)) OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) ENCODE_OR(z0, z1) -> c11(OR(encArg(z0), encArg(z1))) ENCODE_AND(z0, z1) -> c11(AND(encArg(z0), encArg(z1))) ENCODE_NOT(z0) -> c11(NOT(encArg(z0))) S tuples: OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) K tuples:none Defined Rule Symbols: or_2, and_2, not_1, encArg_1, encode_or_2, encode_and_2, encode_not_1 Defined Pair Symbols: ENCARG_1, OR_2, AND_2, NOT_1, ENCODE_OR_2, ENCODE_AND_2, ENCODE_NOT_1 Compound Symbols: c_3, c1_3, c2_2, c6, c7, c8, c9_3, c10_3, c11_1 ---------------------------------------- (11) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_or(z0, z1) -> or(encArg(z0), encArg(z1)) encode_and(z0, z1) -> and(encArg(z0), encArg(z1)) encode_not(z0) -> not(encArg(z0)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_or(z0, z1)) -> or(encArg(z0), encArg(z1)) encArg(cons_and(z0, z1)) -> and(encArg(z0), encArg(z1)) encArg(cons_not(z0)) -> not(encArg(z0)) or(z0, z0) -> z0 and(z0, z0) -> z0 not(not(z0)) -> z0 not(and(z0, z1)) -> or(not(z0), not(z1)) not(or(z0, z1)) -> and(not(z0), not(z1)) Tuples: ENCARG(cons_or(z0, z1)) -> c(OR(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_and(z0, z1)) -> c1(AND(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_not(z0)) -> c2(NOT(encArg(z0)), ENCARG(z0)) OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) ENCODE_OR(z0, z1) -> c11(OR(encArg(z0), encArg(z1))) ENCODE_AND(z0, z1) -> c11(AND(encArg(z0), encArg(z1))) ENCODE_NOT(z0) -> c11(NOT(encArg(z0))) S tuples: OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) K tuples:none Defined Rule Symbols: encArg_1, or_2, and_2, not_1 Defined Pair Symbols: ENCARG_1, OR_2, AND_2, NOT_1, ENCODE_OR_2, ENCODE_AND_2, ENCODE_NOT_1 Compound Symbols: c_3, c1_3, c2_2, c6, c7, c8, c9_3, c10_3, c11_1 ---------------------------------------- (13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) We considered the (Usable) Rules: encArg(cons_not(z0)) -> not(encArg(z0)) not(and(z0, z1)) -> or(not(z0), not(z1)) encArg(cons_or(z0, z1)) -> or(encArg(z0), encArg(z1)) encArg(cons_and(z0, z1)) -> and(encArg(z0), encArg(z1)) or(z0, z0) -> z0 and(z0, z0) -> z0 not(not(z0)) -> z0 not(or(z0, z1)) -> and(not(z0), not(z1)) And the Tuples: ENCARG(cons_or(z0, z1)) -> c(OR(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_and(z0, z1)) -> c1(AND(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_not(z0)) -> c2(NOT(encArg(z0)), ENCARG(z0)) OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) ENCODE_OR(z0, z1) -> c11(OR(encArg(z0), encArg(z1))) ENCODE_AND(z0, z1) -> c11(AND(encArg(z0), encArg(z1))) ENCODE_NOT(z0) -> c11(NOT(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(AND(x_1, x_2)) = 0 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_AND(x_1, x_2)) = [2] + [2]x_2 + [2]x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(ENCODE_NOT(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_OR(x_1, x_2)) = [2] + [2]x_1 + x_2 + [2]x_2^2 + x_1*x_2 + [2]x_1^2 POL(NOT(x_1)) = x_1 POL(OR(x_1, x_2)) = 0 POL(and(x_1, x_2)) = [2] + x_1 + x_2 POL(c(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c10(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c11(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c6) = 0 POL(c7) = 0 POL(c8) = 0 POL(c9(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(cons_and(x_1, x_2)) = [2] + x_1 + x_2 POL(cons_not(x_1)) = [2] + x_1 POL(cons_or(x_1, x_2)) = [2] + x_1 + x_2 POL(encArg(x_1)) = [1] + [2]x_1 POL(not(x_1)) = x_1 POL(or(x_1, x_2)) = [2] + x_1 + x_2 ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_or(z0, z1)) -> or(encArg(z0), encArg(z1)) encArg(cons_and(z0, z1)) -> and(encArg(z0), encArg(z1)) encArg(cons_not(z0)) -> not(encArg(z0)) or(z0, z0) -> z0 and(z0, z0) -> z0 not(not(z0)) -> z0 not(and(z0, z1)) -> or(not(z0), not(z1)) not(or(z0, z1)) -> and(not(z0), not(z1)) Tuples: ENCARG(cons_or(z0, z1)) -> c(OR(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_and(z0, z1)) -> c1(AND(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_not(z0)) -> c2(NOT(encArg(z0)), ENCARG(z0)) OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) ENCODE_OR(z0, z1) -> c11(OR(encArg(z0), encArg(z1))) ENCODE_AND(z0, z1) -> c11(AND(encArg(z0), encArg(z1))) ENCODE_NOT(z0) -> c11(NOT(encArg(z0))) S tuples: OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 K tuples: NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) Defined Rule Symbols: encArg_1, or_2, and_2, not_1 Defined Pair Symbols: ENCARG_1, OR_2, AND_2, NOT_1, ENCODE_OR_2, ENCODE_AND_2, ENCODE_NOT_1 Compound Symbols: c_3, c1_3, c2_2, c6, c7, c8, c9_3, c10_3, c11_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. OR(z0, z0) -> c6 We considered the (Usable) Rules: encArg(cons_not(z0)) -> not(encArg(z0)) not(and(z0, z1)) -> or(not(z0), not(z1)) encArg(cons_or(z0, z1)) -> or(encArg(z0), encArg(z1)) encArg(cons_and(z0, z1)) -> and(encArg(z0), encArg(z1)) or(z0, z0) -> z0 and(z0, z0) -> z0 not(not(z0)) -> z0 not(or(z0, z1)) -> and(not(z0), not(z1)) And the Tuples: ENCARG(cons_or(z0, z1)) -> c(OR(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_and(z0, z1)) -> c1(AND(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_not(z0)) -> c2(NOT(encArg(z0)), ENCARG(z0)) OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) ENCODE_OR(z0, z1) -> c11(OR(encArg(z0), encArg(z1))) ENCODE_AND(z0, z1) -> c11(AND(encArg(z0), encArg(z1))) ENCODE_NOT(z0) -> c11(NOT(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(AND(x_1, x_2)) = 0 POL(ENCARG(x_1)) = [1] + x_1^2 POL(ENCODE_AND(x_1, x_2)) = [2] + x_1 + [2]x_2 + [2]x_2^2 + [2]x_1*x_2 + x_1^2 POL(ENCODE_NOT(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_OR(x_1, x_2)) = [1] + [2]x_1 + [2]x_2 + [2]x_2^2 + [2]x_1*x_2 + x_1^2 POL(NOT(x_1)) = x_1 POL(OR(x_1, x_2)) = [1] POL(and(x_1, x_2)) = [2] + x_1 + x_2 POL(c(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c10(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c11(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c6) = 0 POL(c7) = 0 POL(c8) = 0 POL(c9(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(cons_and(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_not(x_1)) = [1] + x_1 POL(cons_or(x_1, x_2)) = [2] + x_1 + x_2 POL(encArg(x_1)) = [2]x_1 POL(not(x_1)) = x_1 POL(or(x_1, x_2)) = [2] + x_1 + x_2 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_or(z0, z1)) -> or(encArg(z0), encArg(z1)) encArg(cons_and(z0, z1)) -> and(encArg(z0), encArg(z1)) encArg(cons_not(z0)) -> not(encArg(z0)) or(z0, z0) -> z0 and(z0, z0) -> z0 not(not(z0)) -> z0 not(and(z0, z1)) -> or(not(z0), not(z1)) not(or(z0, z1)) -> and(not(z0), not(z1)) Tuples: ENCARG(cons_or(z0, z1)) -> c(OR(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_and(z0, z1)) -> c1(AND(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_not(z0)) -> c2(NOT(encArg(z0)), ENCARG(z0)) OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) ENCODE_OR(z0, z1) -> c11(OR(encArg(z0), encArg(z1))) ENCODE_AND(z0, z1) -> c11(AND(encArg(z0), encArg(z1))) ENCODE_NOT(z0) -> c11(NOT(encArg(z0))) S tuples: AND(z0, z0) -> c7 NOT(not(z0)) -> c8 K tuples: NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) OR(z0, z0) -> c6 Defined Rule Symbols: encArg_1, or_2, and_2, not_1 Defined Pair Symbols: ENCARG_1, OR_2, AND_2, NOT_1, ENCODE_OR_2, ENCODE_AND_2, ENCODE_NOT_1 Compound Symbols: c_3, c1_3, c2_2, c6, c7, c8, c9_3, c10_3, c11_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. AND(z0, z0) -> c7 We considered the (Usable) Rules: encArg(cons_not(z0)) -> not(encArg(z0)) not(and(z0, z1)) -> or(not(z0), not(z1)) encArg(cons_or(z0, z1)) -> or(encArg(z0), encArg(z1)) encArg(cons_and(z0, z1)) -> and(encArg(z0), encArg(z1)) or(z0, z0) -> z0 and(z0, z0) -> z0 not(not(z0)) -> z0 not(or(z0, z1)) -> and(not(z0), not(z1)) And the Tuples: ENCARG(cons_or(z0, z1)) -> c(OR(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_and(z0, z1)) -> c1(AND(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_not(z0)) -> c2(NOT(encArg(z0)), ENCARG(z0)) OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) ENCODE_OR(z0, z1) -> c11(OR(encArg(z0), encArg(z1))) ENCODE_AND(z0, z1) -> c11(AND(encArg(z0), encArg(z1))) ENCODE_NOT(z0) -> c11(NOT(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(AND(x_1, x_2)) = [1] POL(ENCARG(x_1)) = [2]x_1^2 POL(ENCODE_AND(x_1, x_2)) = [2] + [2]x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(ENCODE_NOT(x_1)) = [2] + [2]x_1 + x_1^2 POL(ENCODE_OR(x_1, x_2)) = [2] + [2]x_2 + [2]x_2^2 + x_1*x_2 + x_1^2 POL(NOT(x_1)) = x_1 POL(OR(x_1, x_2)) = 0 POL(and(x_1, x_2)) = [1] + x_1 + x_2 POL(c(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c10(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c11(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c6) = 0 POL(c7) = 0 POL(c8) = 0 POL(c9(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(cons_and(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_not(x_1)) = [1] + x_1 POL(cons_or(x_1, x_2)) = [2] + x_1 + x_2 POL(encArg(x_1)) = x_1 POL(not(x_1)) = x_1 POL(or(x_1, x_2)) = [1] + x_1 + x_2 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_or(z0, z1)) -> or(encArg(z0), encArg(z1)) encArg(cons_and(z0, z1)) -> and(encArg(z0), encArg(z1)) encArg(cons_not(z0)) -> not(encArg(z0)) or(z0, z0) -> z0 and(z0, z0) -> z0 not(not(z0)) -> z0 not(and(z0, z1)) -> or(not(z0), not(z1)) not(or(z0, z1)) -> and(not(z0), not(z1)) Tuples: ENCARG(cons_or(z0, z1)) -> c(OR(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_and(z0, z1)) -> c1(AND(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_not(z0)) -> c2(NOT(encArg(z0)), ENCARG(z0)) OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) ENCODE_OR(z0, z1) -> c11(OR(encArg(z0), encArg(z1))) ENCODE_AND(z0, z1) -> c11(AND(encArg(z0), encArg(z1))) ENCODE_NOT(z0) -> c11(NOT(encArg(z0))) S tuples: NOT(not(z0)) -> c8 K tuples: NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) OR(z0, z0) -> c6 AND(z0, z0) -> c7 Defined Rule Symbols: encArg_1, or_2, and_2, not_1 Defined Pair Symbols: ENCARG_1, OR_2, AND_2, NOT_1, ENCODE_OR_2, ENCODE_AND_2, ENCODE_NOT_1 Compound Symbols: c_3, c1_3, c2_2, c6, c7, c8, c9_3, c10_3, c11_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. NOT(not(z0)) -> c8 We considered the (Usable) Rules: encArg(cons_not(z0)) -> not(encArg(z0)) not(and(z0, z1)) -> or(not(z0), not(z1)) encArg(cons_or(z0, z1)) -> or(encArg(z0), encArg(z1)) encArg(cons_and(z0, z1)) -> and(encArg(z0), encArg(z1)) or(z0, z0) -> z0 and(z0, z0) -> z0 not(not(z0)) -> z0 not(or(z0, z1)) -> and(not(z0), not(z1)) And the Tuples: ENCARG(cons_or(z0, z1)) -> c(OR(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_and(z0, z1)) -> c1(AND(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_not(z0)) -> c2(NOT(encArg(z0)), ENCARG(z0)) OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) ENCODE_OR(z0, z1) -> c11(OR(encArg(z0), encArg(z1))) ENCODE_AND(z0, z1) -> c11(AND(encArg(z0), encArg(z1))) ENCODE_NOT(z0) -> c11(NOT(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(AND(x_1, x_2)) = 0 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_AND(x_1, x_2)) = [2] + [2]x_1 + [2]x_2 + x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(ENCODE_NOT(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_OR(x_1, x_2)) = [2] + x_2 + x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(NOT(x_1)) = [1] + x_1 POL(OR(x_1, x_2)) = 0 POL(and(x_1, x_2)) = [1] + x_1 + x_2 POL(c(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c10(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c11(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c6) = 0 POL(c7) = 0 POL(c8) = 0 POL(c9(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(cons_and(x_1, x_2)) = [2] + x_1 + x_2 POL(cons_not(x_1)) = [1] + x_1 POL(cons_or(x_1, x_2)) = [2] + x_1 + x_2 POL(encArg(x_1)) = [2]x_1 POL(not(x_1)) = x_1 POL(or(x_1, x_2)) = [1] + x_1 + x_2 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_or(z0, z1)) -> or(encArg(z0), encArg(z1)) encArg(cons_and(z0, z1)) -> and(encArg(z0), encArg(z1)) encArg(cons_not(z0)) -> not(encArg(z0)) or(z0, z0) -> z0 and(z0, z0) -> z0 not(not(z0)) -> z0 not(and(z0, z1)) -> or(not(z0), not(z1)) not(or(z0, z1)) -> and(not(z0), not(z1)) Tuples: ENCARG(cons_or(z0, z1)) -> c(OR(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_and(z0, z1)) -> c1(AND(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_not(z0)) -> c2(NOT(encArg(z0)), ENCARG(z0)) OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) ENCODE_OR(z0, z1) -> c11(OR(encArg(z0), encArg(z1))) ENCODE_AND(z0, z1) -> c11(AND(encArg(z0), encArg(z1))) ENCODE_NOT(z0) -> c11(NOT(encArg(z0))) S tuples:none K tuples: NOT(and(z0, z1)) -> c9(OR(not(z0), not(z1)), NOT(z0), NOT(z1)) NOT(or(z0, z1)) -> c10(AND(not(z0), not(z1)), NOT(z0), NOT(z1)) OR(z0, z0) -> c6 AND(z0, z0) -> c7 NOT(not(z0)) -> c8 Defined Rule Symbols: encArg_1, or_2, and_2, not_1 Defined Pair Symbols: ENCARG_1, OR_2, AND_2, NOT_1, ENCODE_OR_2, ENCODE_AND_2, ENCODE_NOT_1 Compound Symbols: c_3, c1_3, c2_2, c6, c7, c8, c9_3, c10_3, c11_1 ---------------------------------------- (21) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (22) BOUNDS(1, 1)