/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 168 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 86 ms] (18) CdtProblem (19) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (20) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: gcd(x, 0) -> x gcd(0, y) -> y gcd(s(x), s(y)) -> if(<(x, y), gcd(s(x), -(y, x)), gcd(-(x, y), s(y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(<(x_1, x_2)) -> <(encArg(x_1), encArg(x_2)) encArg(-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_gcd(x_1, x_2)) -> gcd(encArg(x_1), encArg(x_2)) encode_gcd(x_1, x_2) -> gcd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<(x_1, x_2) -> <(encArg(x_1), encArg(x_2)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: gcd(x, 0) -> x gcd(0, y) -> y gcd(s(x), s(y)) -> if(<(x, y), gcd(s(x), -(y, x)), gcd(-(x, y), s(y))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(<(x_1, x_2)) -> <(encArg(x_1), encArg(x_2)) encArg(-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_gcd(x_1, x_2)) -> gcd(encArg(x_1), encArg(x_2)) encode_gcd(x_1, x_2) -> gcd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<(x_1, x_2) -> <(encArg(x_1), encArg(x_2)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: gcd(x, 0) -> x gcd(0, y) -> y gcd(s(x), s(y)) -> if(<(x, y), gcd(s(x), -(y, x)), gcd(-(x, y), s(y))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(<(x_1, x_2)) -> <(encArg(x_1), encArg(x_2)) encArg(-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_gcd(x_1, x_2)) -> gcd(encArg(x_1), encArg(x_2)) encode_gcd(x_1, x_2) -> gcd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_<(x_1, x_2) -> <(encArg(x_1), encArg(x_2)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(s(z0)) -> s(encArg(z0)) encArg(if(z0, z1, z2)) -> if(encArg(z0), encArg(z1), encArg(z2)) encArg(<(z0, z1)) -> <(encArg(z0), encArg(z1)) encArg(-(z0, z1)) -> -(encArg(z0), encArg(z1)) encArg(cons_gcd(z0, z1)) -> gcd(encArg(z0), encArg(z1)) encode_gcd(z0, z1) -> gcd(encArg(z0), encArg(z1)) encode_0 -> 0 encode_s(z0) -> s(encArg(z0)) encode_if(z0, z1, z2) -> if(encArg(z0), encArg(z1), encArg(z2)) encode_<(z0, z1) -> <(encArg(z0), encArg(z1)) encode_-(z0, z1) -> -(encArg(z0), encArg(z1)) gcd(z0, 0) -> z0 gcd(0, z0) -> z0 gcd(s(z0), s(z1)) -> if(<(z0, z1), gcd(s(z0), -(z1, z0)), gcd(-(z0, z1), s(z1))) Tuples: ENCARG(0) -> c ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(if(z0, z1, z2)) -> c2(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(<(z0, z1)) -> c3(ENCARG(z0), ENCARG(z1)) ENCARG(-(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) ENCARG(cons_gcd(z0, z1)) -> c5(GCD(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_GCD(z0, z1) -> c6(GCD(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_0 -> c7 ENCODE_S(z0) -> c8(ENCARG(z0)) ENCODE_IF(z0, z1, z2) -> c9(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_<(z0, z1) -> c10(ENCARG(z0), ENCARG(z1)) ENCODE_-(z0, z1) -> c11(ENCARG(z0), ENCARG(z1)) GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14(GCD(s(z0), -(z1, z0)), GCD(-(z0, z1), s(z1))) S tuples: GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14(GCD(s(z0), -(z1, z0)), GCD(-(z0, z1), s(z1))) K tuples:none Defined Rule Symbols: gcd_2, encArg_1, encode_gcd_2, encode_0, encode_s_1, encode_if_3, encode_<_2, encode_-_2 Defined Pair Symbols: ENCARG_1, ENCODE_GCD_2, ENCODE_0, ENCODE_S_1, ENCODE_IF_3, ENCODE_<_2, ENCODE_-_2, GCD_2 Compound Symbols: c, c1_1, c2_3, c3_2, c4_2, c5_3, c6_3, c7, c8_1, c9_3, c10_2, c11_2, c12, c13, c14_2 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 4 leading nodes: ENCODE_S(z0) -> c8(ENCARG(z0)) ENCODE_IF(z0, z1, z2) -> c9(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_<(z0, z1) -> c10(ENCARG(z0), ENCARG(z1)) ENCODE_-(z0, z1) -> c11(ENCARG(z0), ENCARG(z1)) Removed 2 trailing nodes: ENCODE_0 -> c7 ENCARG(0) -> c ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(s(z0)) -> s(encArg(z0)) encArg(if(z0, z1, z2)) -> if(encArg(z0), encArg(z1), encArg(z2)) encArg(<(z0, z1)) -> <(encArg(z0), encArg(z1)) encArg(-(z0, z1)) -> -(encArg(z0), encArg(z1)) encArg(cons_gcd(z0, z1)) -> gcd(encArg(z0), encArg(z1)) encode_gcd(z0, z1) -> gcd(encArg(z0), encArg(z1)) encode_0 -> 0 encode_s(z0) -> s(encArg(z0)) encode_if(z0, z1, z2) -> if(encArg(z0), encArg(z1), encArg(z2)) encode_<(z0, z1) -> <(encArg(z0), encArg(z1)) encode_-(z0, z1) -> -(encArg(z0), encArg(z1)) gcd(z0, 0) -> z0 gcd(0, z0) -> z0 gcd(s(z0), s(z1)) -> if(<(z0, z1), gcd(s(z0), -(z1, z0)), gcd(-(z0, z1), s(z1))) Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(if(z0, z1, z2)) -> c2(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(<(z0, z1)) -> c3(ENCARG(z0), ENCARG(z1)) ENCARG(-(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) ENCARG(cons_gcd(z0, z1)) -> c5(GCD(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_GCD(z0, z1) -> c6(GCD(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14(GCD(s(z0), -(z1, z0)), GCD(-(z0, z1), s(z1))) S tuples: GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14(GCD(s(z0), -(z1, z0)), GCD(-(z0, z1), s(z1))) K tuples:none Defined Rule Symbols: gcd_2, encArg_1, encode_gcd_2, encode_0, encode_s_1, encode_if_3, encode_<_2, encode_-_2 Defined Pair Symbols: ENCARG_1, ENCODE_GCD_2, GCD_2 Compound Symbols: c1_1, c2_3, c3_2, c4_2, c5_3, c6_3, c12, c13, c14_2 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(s(z0)) -> s(encArg(z0)) encArg(if(z0, z1, z2)) -> if(encArg(z0), encArg(z1), encArg(z2)) encArg(<(z0, z1)) -> <(encArg(z0), encArg(z1)) encArg(-(z0, z1)) -> -(encArg(z0), encArg(z1)) encArg(cons_gcd(z0, z1)) -> gcd(encArg(z0), encArg(z1)) encode_gcd(z0, z1) -> gcd(encArg(z0), encArg(z1)) encode_0 -> 0 encode_s(z0) -> s(encArg(z0)) encode_if(z0, z1, z2) -> if(encArg(z0), encArg(z1), encArg(z2)) encode_<(z0, z1) -> <(encArg(z0), encArg(z1)) encode_-(z0, z1) -> -(encArg(z0), encArg(z1)) gcd(z0, 0) -> z0 gcd(0, z0) -> z0 gcd(s(z0), s(z1)) -> if(<(z0, z1), gcd(s(z0), -(z1, z0)), gcd(-(z0, z1), s(z1))) Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(if(z0, z1, z2)) -> c2(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(<(z0, z1)) -> c3(ENCARG(z0), ENCARG(z1)) ENCARG(-(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) ENCARG(cons_gcd(z0, z1)) -> c5(GCD(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_GCD(z0, z1) -> c6(GCD(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14 S tuples: GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14 K tuples:none Defined Rule Symbols: gcd_2, encArg_1, encode_gcd_2, encode_0, encode_s_1, encode_if_3, encode_<_2, encode_-_2 Defined Pair Symbols: ENCARG_1, ENCODE_GCD_2, GCD_2 Compound Symbols: c1_1, c2_3, c3_2, c4_2, c5_3, c6_3, c12, c13, c14 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(s(z0)) -> s(encArg(z0)) encArg(if(z0, z1, z2)) -> if(encArg(z0), encArg(z1), encArg(z2)) encArg(<(z0, z1)) -> <(encArg(z0), encArg(z1)) encArg(-(z0, z1)) -> -(encArg(z0), encArg(z1)) encArg(cons_gcd(z0, z1)) -> gcd(encArg(z0), encArg(z1)) encode_gcd(z0, z1) -> gcd(encArg(z0), encArg(z1)) encode_0 -> 0 encode_s(z0) -> s(encArg(z0)) encode_if(z0, z1, z2) -> if(encArg(z0), encArg(z1), encArg(z2)) encode_<(z0, z1) -> <(encArg(z0), encArg(z1)) encode_-(z0, z1) -> -(encArg(z0), encArg(z1)) gcd(z0, 0) -> z0 gcd(0, z0) -> z0 gcd(s(z0), s(z1)) -> if(<(z0, z1), gcd(s(z0), -(z1, z0)), gcd(-(z0, z1), s(z1))) Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(if(z0, z1, z2)) -> c2(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(<(z0, z1)) -> c3(ENCARG(z0), ENCARG(z1)) ENCARG(-(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) ENCARG(cons_gcd(z0, z1)) -> c5(GCD(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14 ENCODE_GCD(z0, z1) -> c(GCD(encArg(z0), encArg(z1))) ENCODE_GCD(z0, z1) -> c(ENCARG(z0)) ENCODE_GCD(z0, z1) -> c(ENCARG(z1)) S tuples: GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14 K tuples:none Defined Rule Symbols: gcd_2, encArg_1, encode_gcd_2, encode_0, encode_s_1, encode_if_3, encode_<_2, encode_-_2 Defined Pair Symbols: ENCARG_1, GCD_2, ENCODE_GCD_2 Compound Symbols: c1_1, c2_3, c3_2, c4_2, c5_3, c12, c13, c14, c_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_GCD(z0, z1) -> c(ENCARG(z0)) ENCODE_GCD(z0, z1) -> c(ENCARG(z1)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(s(z0)) -> s(encArg(z0)) encArg(if(z0, z1, z2)) -> if(encArg(z0), encArg(z1), encArg(z2)) encArg(<(z0, z1)) -> <(encArg(z0), encArg(z1)) encArg(-(z0, z1)) -> -(encArg(z0), encArg(z1)) encArg(cons_gcd(z0, z1)) -> gcd(encArg(z0), encArg(z1)) encode_gcd(z0, z1) -> gcd(encArg(z0), encArg(z1)) encode_0 -> 0 encode_s(z0) -> s(encArg(z0)) encode_if(z0, z1, z2) -> if(encArg(z0), encArg(z1), encArg(z2)) encode_<(z0, z1) -> <(encArg(z0), encArg(z1)) encode_-(z0, z1) -> -(encArg(z0), encArg(z1)) gcd(z0, 0) -> z0 gcd(0, z0) -> z0 gcd(s(z0), s(z1)) -> if(<(z0, z1), gcd(s(z0), -(z1, z0)), gcd(-(z0, z1), s(z1))) Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(if(z0, z1, z2)) -> c2(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(<(z0, z1)) -> c3(ENCARG(z0), ENCARG(z1)) ENCARG(-(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) ENCARG(cons_gcd(z0, z1)) -> c5(GCD(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14 ENCODE_GCD(z0, z1) -> c(GCD(encArg(z0), encArg(z1))) S tuples: GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14 K tuples:none Defined Rule Symbols: gcd_2, encArg_1, encode_gcd_2, encode_0, encode_s_1, encode_if_3, encode_<_2, encode_-_2 Defined Pair Symbols: ENCARG_1, GCD_2, ENCODE_GCD_2 Compound Symbols: c1_1, c2_3, c3_2, c4_2, c5_3, c12, c13, c14, c_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_gcd(z0, z1) -> gcd(encArg(z0), encArg(z1)) encode_0 -> 0 encode_s(z0) -> s(encArg(z0)) encode_if(z0, z1, z2) -> if(encArg(z0), encArg(z1), encArg(z2)) encode_<(z0, z1) -> <(encArg(z0), encArg(z1)) encode_-(z0, z1) -> -(encArg(z0), encArg(z1)) ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(s(z0)) -> s(encArg(z0)) encArg(if(z0, z1, z2)) -> if(encArg(z0), encArg(z1), encArg(z2)) encArg(<(z0, z1)) -> <(encArg(z0), encArg(z1)) encArg(-(z0, z1)) -> -(encArg(z0), encArg(z1)) encArg(cons_gcd(z0, z1)) -> gcd(encArg(z0), encArg(z1)) gcd(z0, 0) -> z0 gcd(0, z0) -> z0 gcd(s(z0), s(z1)) -> if(<(z0, z1), gcd(s(z0), -(z1, z0)), gcd(-(z0, z1), s(z1))) Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(if(z0, z1, z2)) -> c2(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(<(z0, z1)) -> c3(ENCARG(z0), ENCARG(z1)) ENCARG(-(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) ENCARG(cons_gcd(z0, z1)) -> c5(GCD(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14 ENCODE_GCD(z0, z1) -> c(GCD(encArg(z0), encArg(z1))) S tuples: GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14 K tuples:none Defined Rule Symbols: encArg_1, gcd_2 Defined Pair Symbols: ENCARG_1, GCD_2, ENCODE_GCD_2 Compound Symbols: c1_1, c2_3, c3_2, c4_2, c5_3, c12, c13, c14, c_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14 We considered the (Usable) Rules:none And the Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(if(z0, z1, z2)) -> c2(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(<(z0, z1)) -> c3(ENCARG(z0), ENCARG(z1)) ENCARG(-(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) ENCARG(cons_gcd(z0, z1)) -> c5(GCD(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14 ENCODE_GCD(z0, z1) -> c(GCD(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(-(x_1, x_2)) = [1] + x_1 + x_2 POL(0) = [1] POL(<(x_1, x_2)) = [1] + x_1 + x_2 POL(ENCARG(x_1)) = x_1 POL(ENCODE_GCD(x_1, x_2)) = [1] POL(GCD(x_1, x_2)) = [1] POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c12) = 0 POL(c13) = 0 POL(c14) = 0 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c5(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(cons_gcd(x_1, x_2)) = [1] + x_1 + x_2 POL(encArg(x_1)) = [1] + x_1 POL(gcd(x_1, x_2)) = [1] + x_1 + x_2 POL(if(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(s(z0)) -> s(encArg(z0)) encArg(if(z0, z1, z2)) -> if(encArg(z0), encArg(z1), encArg(z2)) encArg(<(z0, z1)) -> <(encArg(z0), encArg(z1)) encArg(-(z0, z1)) -> -(encArg(z0), encArg(z1)) encArg(cons_gcd(z0, z1)) -> gcd(encArg(z0), encArg(z1)) gcd(z0, 0) -> z0 gcd(0, z0) -> z0 gcd(s(z0), s(z1)) -> if(<(z0, z1), gcd(s(z0), -(z1, z0)), gcd(-(z0, z1), s(z1))) Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(if(z0, z1, z2)) -> c2(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(<(z0, z1)) -> c3(ENCARG(z0), ENCARG(z1)) ENCARG(-(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) ENCARG(cons_gcd(z0, z1)) -> c5(GCD(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14 ENCODE_GCD(z0, z1) -> c(GCD(encArg(z0), encArg(z1))) S tuples:none K tuples: GCD(z0, 0) -> c12 GCD(0, z0) -> c13 GCD(s(z0), s(z1)) -> c14 Defined Rule Symbols: encArg_1, gcd_2 Defined Pair Symbols: ENCARG_1, GCD_2, ENCODE_GCD_2 Compound Symbols: c1_1, c2_3, c3_2, c4_2, c5_3, c12, c13, c14, c_1 ---------------------------------------- (19) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (20) BOUNDS(1, 1)