/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 188 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 344 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 247 ms] (18) CdtProblem (19) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (20) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: +(x, +(y, z)) -> +(+(x, y), z) +(*(x, y), +(x, z)) -> *(x, +(y, z)) +(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: +(x, +(y, z)) -> +(+(x, y), z) +(*(x, y), +(x, z)) -> *(x, +(y, z)) +(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u) The (relative) TRS S consists of the following rules: encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: +(x, +(y, z)) -> +(+(x, y), z) +(*(x, y), +(x, z)) -> *(x, +(y, z)) +(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u) The (relative) TRS S consists of the following rules: encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) +(z0, +(z1, z2)) -> +(+(z0, z1), z2) +(*(z0, z1), +(z0, z2)) -> *(z0, +(z1, z2)) +(*(z0, z1), +(*(z0, z2), z3)) -> +(*(z0, +(z1, z2)), z3) Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_+(z0, z1) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_*(z0, z1) -> c3(ENCARG(z0), ENCARG(z1)) +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) S tuples: +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) K tuples:none Defined Rule Symbols: +_2, encArg_1, encode_+_2, encode_*_2 Defined Pair Symbols: ENCARG_1, ENCODE_+_2, ENCODE_*_2, +'_2 Compound Symbols: c_2, c1_3, c2_3, c3_2, c4_2, c5_1, c6_2 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: ENCODE_*(z0, z1) -> c3(ENCARG(z0), ENCARG(z1)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) +(z0, +(z1, z2)) -> +(+(z0, z1), z2) +(*(z0, z1), +(z0, z2)) -> *(z0, +(z1, z2)) +(*(z0, z1), +(*(z0, z2), z3)) -> +(*(z0, +(z1, z2)), z3) Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_+(z0, z1) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) S tuples: +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) K tuples:none Defined Rule Symbols: +_2, encArg_1, encode_+_2, encode_*_2 Defined Pair Symbols: ENCARG_1, ENCODE_+_2, +'_2 Compound Symbols: c_2, c1_3, c2_3, c4_2, c5_1, c6_2 ---------------------------------------- (9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) +(z0, +(z1, z2)) -> +(+(z0, z1), z2) +(*(z0, z1), +(z0, z2)) -> *(z0, +(z1, z2)) +(*(z0, z1), +(*(z0, z2), z3)) -> +(*(z0, +(z1, z2)), z3) Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) ENCODE_+(z0, z1) -> c3(+'(encArg(z0), encArg(z1))) ENCODE_+(z0, z1) -> c3(ENCARG(z0)) ENCODE_+(z0, z1) -> c3(ENCARG(z1)) S tuples: +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) K tuples:none Defined Rule Symbols: +_2, encArg_1, encode_+_2, encode_*_2 Defined Pair Symbols: ENCARG_1, +'_2, ENCODE_+_2 Compound Symbols: c_2, c1_3, c4_2, c5_1, c6_2, c3_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_+(z0, z1) -> c3(ENCARG(z0)) ENCODE_+(z0, z1) -> c3(ENCARG(z1)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) +(z0, +(z1, z2)) -> +(+(z0, z1), z2) +(*(z0, z1), +(z0, z2)) -> *(z0, +(z1, z2)) +(*(z0, z1), +(*(z0, z2), z3)) -> +(*(z0, +(z1, z2)), z3) Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) ENCODE_+(z0, z1) -> c3(+'(encArg(z0), encArg(z1))) S tuples: +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) K tuples:none Defined Rule Symbols: +_2, encArg_1, encode_+_2, encode_*_2 Defined Pair Symbols: ENCARG_1, +'_2, ENCODE_+_2 Compound Symbols: c_2, c1_3, c4_2, c5_1, c6_2, c3_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) +(z0, +(z1, z2)) -> +(+(z0, z1), z2) +(*(z0, z1), +(z0, z2)) -> *(z0, +(z1, z2)) +(*(z0, z1), +(*(z0, z2), z3)) -> +(*(z0, +(z1, z2)), z3) Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) ENCODE_+(z0, z1) -> c3(+'(encArg(z0), encArg(z1))) S tuples: +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) K tuples:none Defined Rule Symbols: encArg_1, +_2 Defined Pair Symbols: ENCARG_1, +'_2, ENCODE_+_2 Compound Symbols: c_2, c1_3, c4_2, c5_1, c6_2, c3_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) We considered the (Usable) Rules: encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) +(z0, +(z1, z2)) -> +(+(z0, z1), z2) +(*(z0, z1), +(z0, z2)) -> *(z0, +(z1, z2)) +(*(z0, z1), +(*(z0, z2), z3)) -> +(*(z0, +(z1, z2)), z3) And the Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) ENCODE_+(z0, z1) -> c3(+'(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(*(x_1, x_2)) = [1] + x_1 + x_2 POL(+(x_1, x_2)) = x_1 + x_2 POL(+'(x_1, x_2)) = x_2 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_+(x_1, x_2)) = [2] + x_2 + [2]x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c5(x_1)) = x_1 POL(c6(x_1, x_2)) = x_1 + x_2 POL(cons_+(x_1, x_2)) = [1] + x_1 + x_2 POL(encArg(x_1)) = x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) +(z0, +(z1, z2)) -> +(+(z0, z1), z2) +(*(z0, z1), +(z0, z2)) -> *(z0, +(z1, z2)) +(*(z0, z1), +(*(z0, z2), z3)) -> +(*(z0, +(z1, z2)), z3) Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) ENCODE_+(z0, z1) -> c3(+'(encArg(z0), encArg(z1))) S tuples: +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) K tuples: +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) Defined Rule Symbols: encArg_1, +_2 Defined Pair Symbols: ENCARG_1, +'_2, ENCODE_+_2 Compound Symbols: c_2, c1_3, c4_2, c5_1, c6_2, c3_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) We considered the (Usable) Rules: encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) +(z0, +(z1, z2)) -> +(+(z0, z1), z2) +(*(z0, z1), +(z0, z2)) -> *(z0, +(z1, z2)) +(*(z0, z1), +(*(z0, z2), z3)) -> +(*(z0, +(z1, z2)), z3) And the Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) ENCODE_+(z0, z1) -> c3(+'(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(*(x_1, x_2)) = x_1 + x_2 POL(+(x_1, x_2)) = [2] + x_1 + x_2 POL(+'(x_1, x_2)) = x_2 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_+(x_1, x_2)) = [1] + [2]x_1 + [2]x_2 + [2]x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c5(x_1)) = x_1 POL(c6(x_1, x_2)) = x_1 + x_2 POL(cons_+(x_1, x_2)) = [2] + x_1 + x_2 POL(encArg(x_1)) = x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) +(z0, +(z1, z2)) -> +(+(z0, z1), z2) +(*(z0, z1), +(z0, z2)) -> *(z0, +(z1, z2)) +(*(z0, z1), +(*(z0, z2), z3)) -> +(*(z0, +(z1, z2)), z3) Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) ENCODE_+(z0, z1) -> c3(+'(encArg(z0), encArg(z1))) S tuples:none K tuples: +'(*(z0, z1), +(*(z0, z2), z3)) -> c6(+'(*(z0, +(z1, z2)), z3), +'(z1, z2)) +'(z0, +(z1, z2)) -> c4(+'(+(z0, z1), z2), +'(z0, z1)) +'(*(z0, z1), +(z0, z2)) -> c5(+'(z1, z2)) Defined Rule Symbols: encArg_1, +_2 Defined Pair Symbols: ENCARG_1, +'_2, ENCODE_+_2 Compound Symbols: c_2, c1_3, c4_2, c5_1, c6_2, c3_1 ---------------------------------------- (19) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (20) BOUNDS(1, 1)