/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 167 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 920 ms] (8) BOUNDS(1, n^1) (9) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (10) TRS for Loop Detection (11) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0) -> s(0) f(s(0)) -> s(s(0)) f(s(0)) -> *(s(s(0)), f(0)) f(+(x, s(0))) -> +(s(s(0)), f(x)) f(+(x, y)) -> *(f(x), f(y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0) -> s(0) f(s(0)) -> s(s(0)) f(s(0)) -> *(s(s(0)), f(0)) f(+(x, s(0))) -> +(s(s(0)), f(x)) f(+(x, y)) -> *(f(x), f(y)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0) -> s(0) f(s(0)) -> s(s(0)) f(s(0)) -> *(s(s(0)), f(0)) f(+(x, s(0))) -> +(s(s(0)), f(x)) f(+(x, y)) -> *(f(x), f(y)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(0) -> s(0) f(s(0)) -> s(s(0)) f(s(0)) -> *(s(s(0)), f(0)) f(+(x, s(0))) -> +(s(s(0)), f(x)) f(+(x, y)) -> *(f(x), f(y)) encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 4. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7] transitions: 00() -> 0 s0(0) -> 0 *0(0, 0) -> 0 +0(0, 0) -> 0 cons_f0(0) -> 0 f0(0) -> 1 encArg0(0) -> 2 encode_f0(0) -> 3 encode_00() -> 4 encode_s0(0) -> 5 encode_*0(0, 0) -> 6 encode_+0(0, 0) -> 7 01() -> 8 s1(8) -> 1 s1(8) -> 9 s1(9) -> 1 s1(9) -> 10 01() -> 12 f1(12) -> 11 *1(10, 11) -> 1 s1(9) -> 13 f1(0) -> 14 +1(13, 14) -> 1 f1(0) -> 15 f1(0) -> 16 *1(15, 16) -> 1 01() -> 2 encArg1(0) -> 17 s1(17) -> 2 encArg1(0) -> 18 encArg1(0) -> 19 *1(18, 19) -> 2 encArg1(0) -> 20 encArg1(0) -> 21 +1(20, 21) -> 2 encArg1(0) -> 22 f1(22) -> 2 f1(22) -> 3 01() -> 4 s1(17) -> 5 *1(18, 19) -> 6 +1(20, 21) -> 7 s1(8) -> 14 s1(8) -> 15 s1(8) -> 16 02() -> 23 s2(23) -> 11 s1(9) -> 14 s1(9) -> 15 s1(9) -> 16 *1(10, 11) -> 14 *1(10, 11) -> 15 *1(10, 11) -> 16 +1(13, 14) -> 14 +1(13, 14) -> 15 +1(13, 14) -> 16 *1(15, 16) -> 14 *1(15, 16) -> 15 *1(15, 16) -> 16 01() -> 17 01() -> 18 01() -> 19 01() -> 20 01() -> 21 01() -> 22 s1(17) -> 17 s1(17) -> 18 s1(17) -> 19 s1(17) -> 20 s1(17) -> 21 s1(17) -> 22 *1(18, 19) -> 17 *1(18, 19) -> 18 *1(18, 19) -> 19 *1(18, 19) -> 20 *1(18, 19) -> 21 *1(18, 19) -> 22 +1(20, 21) -> 17 +1(20, 21) -> 18 +1(20, 21) -> 19 +1(20, 21) -> 20 +1(20, 21) -> 21 +1(20, 21) -> 22 f1(22) -> 17 f1(22) -> 18 f1(22) -> 19 f1(22) -> 20 f1(22) -> 21 f1(22) -> 22 s2(23) -> 2 s2(23) -> 3 s2(23) -> 17 s2(23) -> 18 s2(23) -> 19 s2(23) -> 20 s2(23) -> 21 s2(23) -> 22 s2(23) -> 24 s2(24) -> 2 s2(24) -> 3 s2(24) -> 17 s2(24) -> 18 s2(24) -> 19 s2(24) -> 20 s2(24) -> 21 s2(24) -> 22 s2(24) -> 25 02() -> 27 f2(27) -> 26 *2(25, 26) -> 2 *2(25, 26) -> 3 *2(25, 26) -> 17 *2(25, 26) -> 18 *2(25, 26) -> 19 *2(25, 26) -> 20 *2(25, 26) -> 21 *2(25, 26) -> 22 s2(24) -> 28 f2(20) -> 29 +2(28, 29) -> 2 +2(28, 29) -> 3 +2(28, 29) -> 17 +2(28, 29) -> 18 +2(28, 29) -> 19 +2(28, 29) -> 20 +2(28, 29) -> 21 +2(28, 29) -> 22 f2(20) -> 30 f2(21) -> 31 *2(30, 31) -> 2 *2(30, 31) -> 3 *2(30, 31) -> 17 *2(30, 31) -> 18 *2(30, 31) -> 19 *2(30, 31) -> 20 *2(30, 31) -> 21 *2(30, 31) -> 22 s2(23) -> 29 s2(23) -> 30 s2(23) -> 31 03() -> 32 s3(32) -> 26 s2(24) -> 29 s2(24) -> 30 s2(24) -> 31 s3(32) -> 33 s3(33) -> 29 s3(33) -> 30 s3(33) -> 31 *2(25, 26) -> 29 *2(25, 26) -> 30 *2(25, 26) -> 31 s3(33) -> 34 03() -> 36 f3(36) -> 35 *3(34, 35) -> 29 *3(34, 35) -> 30 *3(34, 35) -> 31 +2(28, 29) -> 29 +2(28, 29) -> 30 +2(28, 29) -> 31 f2(28) -> 30 f2(29) -> 31 *2(30, 31) -> 29 *2(30, 31) -> 30 *2(30, 31) -> 31 f3(28) -> 37 f3(29) -> 38 *3(37, 38) -> 29 *3(37, 38) -> 30 *3(37, 38) -> 31 f2(28) -> 29 s3(33) -> 39 f3(28) -> 40 +3(39, 40) -> 29 +3(39, 40) -> 30 +3(39, 40) -> 31 04() -> 41 s4(41) -> 35 s3(33) -> 38 *3(34, 35) -> 38 +3(39, 40) -> 38 *3(37, 38) -> 38 f3(39) -> 37 f3(40) -> 38 f4(39) -> 42 f4(40) -> 43 *4(42, 43) -> 38 ---------------------------------------- (8) BOUNDS(1, n^1) ---------------------------------------- (9) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0) -> s(0) f(s(0)) -> s(s(0)) f(s(0)) -> *(s(s(0)), f(0)) f(+(x, s(0))) -> +(s(s(0)), f(x)) f(+(x, y)) -> *(f(x), f(y)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (11) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(+(x, y)) ->^+ *(f(x), f(y)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / +(x, y)]. The result substitution is [ ]. ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0) -> s(0) f(s(0)) -> s(s(0)) f(s(0)) -> *(s(s(0)), f(0)) f(+(x, s(0))) -> +(s(s(0)), f(x)) f(+(x, y)) -> *(f(x), f(y)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0) -> s(0) f(s(0)) -> s(s(0)) f(s(0)) -> *(s(s(0)), f(0)) f(+(x, s(0))) -> +(s(s(0)), f(x)) f(+(x, y)) -> *(f(x), f(y)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST