/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^2, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 179 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 230 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 92 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 88 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^2, INF) (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 59 ms] (26) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: sqr(0) -> 0 sqr(s(x)) -> +(sqr(x), s(double(x))) double(0) -> 0 double(s(x)) -> s(s(double(x))) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) sqr(s(x)) -> s(+(sqr(x), double(x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_double(x_1) -> double(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: sqr(0) -> 0 sqr(s(x)) -> +(sqr(x), s(double(x))) double(0) -> 0 double(s(x)) -> s(s(double(x))) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) sqr(s(x)) -> s(+(sqr(x), double(x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_double(x_1) -> double(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: sqr(0) -> 0 sqr(s(x)) -> +(sqr(x), s(double(x))) double(0) -> 0 double(s(x)) -> s(s(double(x))) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) sqr(s(x)) -> s(+(sqr(x), double(x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_double(x_1) -> double(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: sqr(0') -> 0' sqr(s(x)) -> +'(sqr(x), s(double(x))) double(0') -> 0' double(s(x)) -> s(s(double(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) sqr(s(x)) -> s(+'(sqr(x), double(x))) The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_double(x_1) -> double(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: sqr(0') -> 0' sqr(s(x)) -> +'(sqr(x), s(double(x))) double(0') -> 0' double(s(x)) -> s(s(double(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) sqr(s(x)) -> s(+'(sqr(x), double(x))) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_double(x_1) -> double(encArg(x_1)) Types: sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ 0' :: 0':s:cons_sqr:cons_double:cons_+ s :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ +' :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encArg :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_+ :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_0 :: 0':s:cons_sqr:cons_double:cons_+ encode_s :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_+ :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ hole_0':s:cons_sqr:cons_double:cons_+1_3 :: 0':s:cons_sqr:cons_double:cons_+ gen_0':s:cons_sqr:cons_double:cons_+2_3 :: Nat -> 0':s:cons_sqr:cons_double:cons_+ ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sqr, +', double, encArg They will be analysed ascendingly in the following order: +' < sqr double < sqr sqr < encArg +' < encArg double < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: sqr(0') -> 0' sqr(s(x)) -> +'(sqr(x), s(double(x))) double(0') -> 0' double(s(x)) -> s(s(double(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) sqr(s(x)) -> s(+'(sqr(x), double(x))) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_double(x_1) -> double(encArg(x_1)) Types: sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ 0' :: 0':s:cons_sqr:cons_double:cons_+ s :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ +' :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encArg :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_+ :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_0 :: 0':s:cons_sqr:cons_double:cons_+ encode_s :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_+ :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ hole_0':s:cons_sqr:cons_double:cons_+1_3 :: 0':s:cons_sqr:cons_double:cons_+ gen_0':s:cons_sqr:cons_double:cons_+2_3 :: Nat -> 0':s:cons_sqr:cons_double:cons_+ Generator Equations: gen_0':s:cons_sqr:cons_double:cons_+2_3(0) <=> 0' gen_0':s:cons_sqr:cons_double:cons_+2_3(+(x, 1)) <=> s(gen_0':s:cons_sqr:cons_double:cons_+2_3(x)) The following defined symbols remain to be analysed: +', sqr, double, encArg They will be analysed ascendingly in the following order: +' < sqr double < sqr sqr < encArg +' < encArg double < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s:cons_sqr:cons_double:cons_+2_3(a), gen_0':s:cons_sqr:cons_double:cons_+2_3(n4_3)) -> gen_0':s:cons_sqr:cons_double:cons_+2_3(+(n4_3, a)), rt in Omega(1 + n4_3) Induction Base: +'(gen_0':s:cons_sqr:cons_double:cons_+2_3(a), gen_0':s:cons_sqr:cons_double:cons_+2_3(0)) ->_R^Omega(1) gen_0':s:cons_sqr:cons_double:cons_+2_3(a) Induction Step: +'(gen_0':s:cons_sqr:cons_double:cons_+2_3(a), gen_0':s:cons_sqr:cons_double:cons_+2_3(+(n4_3, 1))) ->_R^Omega(1) s(+'(gen_0':s:cons_sqr:cons_double:cons_+2_3(a), gen_0':s:cons_sqr:cons_double:cons_+2_3(n4_3))) ->_IH s(gen_0':s:cons_sqr:cons_double:cons_+2_3(+(a, c5_3))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: sqr(0') -> 0' sqr(s(x)) -> +'(sqr(x), s(double(x))) double(0') -> 0' double(s(x)) -> s(s(double(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) sqr(s(x)) -> s(+'(sqr(x), double(x))) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_double(x_1) -> double(encArg(x_1)) Types: sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ 0' :: 0':s:cons_sqr:cons_double:cons_+ s :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ +' :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encArg :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_+ :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_0 :: 0':s:cons_sqr:cons_double:cons_+ encode_s :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_+ :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ hole_0':s:cons_sqr:cons_double:cons_+1_3 :: 0':s:cons_sqr:cons_double:cons_+ gen_0':s:cons_sqr:cons_double:cons_+2_3 :: Nat -> 0':s:cons_sqr:cons_double:cons_+ Generator Equations: gen_0':s:cons_sqr:cons_double:cons_+2_3(0) <=> 0' gen_0':s:cons_sqr:cons_double:cons_+2_3(+(x, 1)) <=> s(gen_0':s:cons_sqr:cons_double:cons_+2_3(x)) The following defined symbols remain to be analysed: +', sqr, double, encArg They will be analysed ascendingly in the following order: +' < sqr double < sqr sqr < encArg +' < encArg double < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: sqr(0') -> 0' sqr(s(x)) -> +'(sqr(x), s(double(x))) double(0') -> 0' double(s(x)) -> s(s(double(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) sqr(s(x)) -> s(+'(sqr(x), double(x))) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_double(x_1) -> double(encArg(x_1)) Types: sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ 0' :: 0':s:cons_sqr:cons_double:cons_+ s :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ +' :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encArg :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_+ :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_0 :: 0':s:cons_sqr:cons_double:cons_+ encode_s :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_+ :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ hole_0':s:cons_sqr:cons_double:cons_+1_3 :: 0':s:cons_sqr:cons_double:cons_+ gen_0':s:cons_sqr:cons_double:cons_+2_3 :: Nat -> 0':s:cons_sqr:cons_double:cons_+ Lemmas: +'(gen_0':s:cons_sqr:cons_double:cons_+2_3(a), gen_0':s:cons_sqr:cons_double:cons_+2_3(n4_3)) -> gen_0':s:cons_sqr:cons_double:cons_+2_3(+(n4_3, a)), rt in Omega(1 + n4_3) Generator Equations: gen_0':s:cons_sqr:cons_double:cons_+2_3(0) <=> 0' gen_0':s:cons_sqr:cons_double:cons_+2_3(+(x, 1)) <=> s(gen_0':s:cons_sqr:cons_double:cons_+2_3(x)) The following defined symbols remain to be analysed: double, sqr, encArg They will be analysed ascendingly in the following order: double < sqr sqr < encArg double < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: double(gen_0':s:cons_sqr:cons_double:cons_+2_3(n773_3)) -> gen_0':s:cons_sqr:cons_double:cons_+2_3(*(2, n773_3)), rt in Omega(1 + n773_3) Induction Base: double(gen_0':s:cons_sqr:cons_double:cons_+2_3(0)) ->_R^Omega(1) 0' Induction Step: double(gen_0':s:cons_sqr:cons_double:cons_+2_3(+(n773_3, 1))) ->_R^Omega(1) s(s(double(gen_0':s:cons_sqr:cons_double:cons_+2_3(n773_3)))) ->_IH s(s(gen_0':s:cons_sqr:cons_double:cons_+2_3(*(2, c774_3)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: Innermost TRS: Rules: sqr(0') -> 0' sqr(s(x)) -> +'(sqr(x), s(double(x))) double(0') -> 0' double(s(x)) -> s(s(double(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) sqr(s(x)) -> s(+'(sqr(x), double(x))) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_double(x_1) -> double(encArg(x_1)) Types: sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ 0' :: 0':s:cons_sqr:cons_double:cons_+ s :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ +' :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encArg :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_+ :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_0 :: 0':s:cons_sqr:cons_double:cons_+ encode_s :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_+ :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ hole_0':s:cons_sqr:cons_double:cons_+1_3 :: 0':s:cons_sqr:cons_double:cons_+ gen_0':s:cons_sqr:cons_double:cons_+2_3 :: Nat -> 0':s:cons_sqr:cons_double:cons_+ Lemmas: +'(gen_0':s:cons_sqr:cons_double:cons_+2_3(a), gen_0':s:cons_sqr:cons_double:cons_+2_3(n4_3)) -> gen_0':s:cons_sqr:cons_double:cons_+2_3(+(n4_3, a)), rt in Omega(1 + n4_3) double(gen_0':s:cons_sqr:cons_double:cons_+2_3(n773_3)) -> gen_0':s:cons_sqr:cons_double:cons_+2_3(*(2, n773_3)), rt in Omega(1 + n773_3) Generator Equations: gen_0':s:cons_sqr:cons_double:cons_+2_3(0) <=> 0' gen_0':s:cons_sqr:cons_double:cons_+2_3(+(x, 1)) <=> s(gen_0':s:cons_sqr:cons_double:cons_+2_3(x)) The following defined symbols remain to be analysed: sqr, encArg They will be analysed ascendingly in the following order: sqr < encArg ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sqr(gen_0':s:cons_sqr:cons_double:cons_+2_3(n1117_3)) -> gen_0':s:cons_sqr:cons_double:cons_+2_3(*(n1117_3, n1117_3)), rt in Omega(1 + n1117_3 + n1117_3^2) Induction Base: sqr(gen_0':s:cons_sqr:cons_double:cons_+2_3(0)) ->_R^Omega(1) 0' Induction Step: sqr(gen_0':s:cons_sqr:cons_double:cons_+2_3(+(n1117_3, 1))) ->_R^Omega(1) +'(sqr(gen_0':s:cons_sqr:cons_double:cons_+2_3(n1117_3)), s(double(gen_0':s:cons_sqr:cons_double:cons_+2_3(n1117_3)))) ->_IH +'(gen_0':s:cons_sqr:cons_double:cons_+2_3(*(c1118_3, c1118_3)), s(double(gen_0':s:cons_sqr:cons_double:cons_+2_3(n1117_3)))) ->_L^Omega(1 + n1117_3) +'(gen_0':s:cons_sqr:cons_double:cons_+2_3(*(n1117_3, n1117_3)), s(gen_0':s:cons_sqr:cons_double:cons_+2_3(*(2, n1117_3)))) ->_L^Omega(2 + 2*n1117_3) gen_0':s:cons_sqr:cons_double:cons_+2_3(+(+(*(2, n1117_3), 1), *(n1117_3, n1117_3))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^2 for the following obligation: Innermost TRS: Rules: sqr(0') -> 0' sqr(s(x)) -> +'(sqr(x), s(double(x))) double(0') -> 0' double(s(x)) -> s(s(double(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) sqr(s(x)) -> s(+'(sqr(x), double(x))) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_double(x_1) -> double(encArg(x_1)) Types: sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ 0' :: 0':s:cons_sqr:cons_double:cons_+ s :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ +' :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encArg :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_+ :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_0 :: 0':s:cons_sqr:cons_double:cons_+ encode_s :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_+ :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ hole_0':s:cons_sqr:cons_double:cons_+1_3 :: 0':s:cons_sqr:cons_double:cons_+ gen_0':s:cons_sqr:cons_double:cons_+2_3 :: Nat -> 0':s:cons_sqr:cons_double:cons_+ Lemmas: +'(gen_0':s:cons_sqr:cons_double:cons_+2_3(a), gen_0':s:cons_sqr:cons_double:cons_+2_3(n4_3)) -> gen_0':s:cons_sqr:cons_double:cons_+2_3(+(n4_3, a)), rt in Omega(1 + n4_3) double(gen_0':s:cons_sqr:cons_double:cons_+2_3(n773_3)) -> gen_0':s:cons_sqr:cons_double:cons_+2_3(*(2, n773_3)), rt in Omega(1 + n773_3) Generator Equations: gen_0':s:cons_sqr:cons_double:cons_+2_3(0) <=> 0' gen_0':s:cons_sqr:cons_double:cons_+2_3(+(x, 1)) <=> s(gen_0':s:cons_sqr:cons_double:cons_+2_3(x)) The following defined symbols remain to be analysed: sqr, encArg They will be analysed ascendingly in the following order: sqr < encArg ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^2, INF) ---------------------------------------- (24) Obligation: Innermost TRS: Rules: sqr(0') -> 0' sqr(s(x)) -> +'(sqr(x), s(double(x))) double(0') -> 0' double(s(x)) -> s(s(double(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) sqr(s(x)) -> s(+'(sqr(x), double(x))) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_double(x_1) -> double(encArg(x_1)) Types: sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ 0' :: 0':s:cons_sqr:cons_double:cons_+ s :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ +' :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encArg :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ cons_+ :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_sqr :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_0 :: 0':s:cons_sqr:cons_double:cons_+ encode_s :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_+ :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ encode_double :: 0':s:cons_sqr:cons_double:cons_+ -> 0':s:cons_sqr:cons_double:cons_+ hole_0':s:cons_sqr:cons_double:cons_+1_3 :: 0':s:cons_sqr:cons_double:cons_+ gen_0':s:cons_sqr:cons_double:cons_+2_3 :: Nat -> 0':s:cons_sqr:cons_double:cons_+ Lemmas: +'(gen_0':s:cons_sqr:cons_double:cons_+2_3(a), gen_0':s:cons_sqr:cons_double:cons_+2_3(n4_3)) -> gen_0':s:cons_sqr:cons_double:cons_+2_3(+(n4_3, a)), rt in Omega(1 + n4_3) double(gen_0':s:cons_sqr:cons_double:cons_+2_3(n773_3)) -> gen_0':s:cons_sqr:cons_double:cons_+2_3(*(2, n773_3)), rt in Omega(1 + n773_3) sqr(gen_0':s:cons_sqr:cons_double:cons_+2_3(n1117_3)) -> gen_0':s:cons_sqr:cons_double:cons_+2_3(*(n1117_3, n1117_3)), rt in Omega(1 + n1117_3 + n1117_3^2) Generator Equations: gen_0':s:cons_sqr:cons_double:cons_+2_3(0) <=> 0' gen_0':s:cons_sqr:cons_double:cons_+2_3(+(x, 1)) <=> s(gen_0':s:cons_sqr:cons_double:cons_+2_3(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':s:cons_sqr:cons_double:cons_+2_3(n2123_3)) -> gen_0':s:cons_sqr:cons_double:cons_+2_3(n2123_3), rt in Omega(0) Induction Base: encArg(gen_0':s:cons_sqr:cons_double:cons_+2_3(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':s:cons_sqr:cons_double:cons_+2_3(+(n2123_3, 1))) ->_R^Omega(0) s(encArg(gen_0':s:cons_sqr:cons_double:cons_+2_3(n2123_3))) ->_IH s(gen_0':s:cons_sqr:cons_double:cons_+2_3(c2124_3)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (26) BOUNDS(1, INF)