/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 166 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 62 ms] (18) CdtProblem (19) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (20) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(g(h(x, y)), f(a, a)) -> f(h(x, x), g(f(y, a))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(g(x_1)) -> g(encArg(x_1)) encArg(h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_a -> a ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(g(h(x, y)), f(a, a)) -> f(h(x, x), g(f(y, a))) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_a -> a Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(g(h(x, y)), f(a, a)) -> f(h(x, x), g(f(y, a))) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_a -> a Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_g(z0) -> g(encArg(z0)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) encode_a -> a f(g(h(z0, z1)), f(a, a)) -> f(h(z0, z0), g(f(z1, a))) Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(h(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(a) -> c2 ENCARG(cons_f(z0, z1)) -> c3(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_F(z0, z1) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_G(z0) -> c5(ENCARG(z0)) ENCODE_H(z0, z1) -> c6(ENCARG(z0), ENCARG(z1)) ENCODE_A -> c7 F(g(h(z0, z1)), f(a, a)) -> c8(F(h(z0, z0), g(f(z1, a))), F(z1, a)) S tuples: F(g(h(z0, z1)), f(a, a)) -> c8(F(h(z0, z0), g(f(z1, a))), F(z1, a)) K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2, encode_g_1, encode_h_2, encode_a Defined Pair Symbols: ENCARG_1, ENCODE_F_2, ENCODE_G_1, ENCODE_H_2, ENCODE_A, F_2 Compound Symbols: c_1, c1_2, c2, c3_3, c4_3, c5_1, c6_2, c7, c8_2 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_G(z0) -> c5(ENCARG(z0)) ENCODE_H(z0, z1) -> c6(ENCARG(z0), ENCARG(z1)) Removed 2 trailing nodes: ENCODE_A -> c7 ENCARG(a) -> c2 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_g(z0) -> g(encArg(z0)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) encode_a -> a f(g(h(z0, z1)), f(a, a)) -> f(h(z0, z0), g(f(z1, a))) Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(h(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1)) -> c3(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_F(z0, z1) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(g(h(z0, z1)), f(a, a)) -> c8(F(h(z0, z0), g(f(z1, a))), F(z1, a)) S tuples: F(g(h(z0, z1)), f(a, a)) -> c8(F(h(z0, z0), g(f(z1, a))), F(z1, a)) K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2, encode_g_1, encode_h_2, encode_a Defined Pair Symbols: ENCARG_1, ENCODE_F_2, F_2 Compound Symbols: c_1, c1_2, c3_3, c4_3, c8_2 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_g(z0) -> g(encArg(z0)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) encode_a -> a f(g(h(z0, z1)), f(a, a)) -> f(h(z0, z0), g(f(z1, a))) Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(h(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1)) -> c3(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_F(z0, z1) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(g(h(z0, z1)), f(a, a)) -> c8 S tuples: F(g(h(z0, z1)), f(a, a)) -> c8 K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2, encode_g_1, encode_h_2, encode_a Defined Pair Symbols: ENCARG_1, ENCODE_F_2, F_2 Compound Symbols: c_1, c1_2, c3_3, c4_3, c8 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_g(z0) -> g(encArg(z0)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) encode_a -> a f(g(h(z0, z1)), f(a, a)) -> f(h(z0, z0), g(f(z1, a))) Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(h(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1)) -> c3(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(g(h(z0, z1)), f(a, a)) -> c8 ENCODE_F(z0, z1) -> c2(F(encArg(z0), encArg(z1))) ENCODE_F(z0, z1) -> c2(ENCARG(z0)) ENCODE_F(z0, z1) -> c2(ENCARG(z1)) S tuples: F(g(h(z0, z1)), f(a, a)) -> c8 K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2, encode_g_1, encode_h_2, encode_a Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c_1, c1_2, c3_3, c8, c2_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_F(z0, z1) -> c2(ENCARG(z0)) ENCODE_F(z0, z1) -> c2(ENCARG(z1)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_g(z0) -> g(encArg(z0)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) encode_a -> a f(g(h(z0, z1)), f(a, a)) -> f(h(z0, z0), g(f(z1, a))) Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(h(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1)) -> c3(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(g(h(z0, z1)), f(a, a)) -> c8 ENCODE_F(z0, z1) -> c2(F(encArg(z0), encArg(z1))) S tuples: F(g(h(z0, z1)), f(a, a)) -> c8 K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2, encode_g_1, encode_h_2, encode_a Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c_1, c1_2, c3_3, c8, c2_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_g(z0) -> g(encArg(z0)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) encode_a -> a ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(g(h(z0, z1)), f(a, a)) -> f(h(z0, z0), g(f(z1, a))) Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(h(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1)) -> c3(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(g(h(z0, z1)), f(a, a)) -> c8 ENCODE_F(z0, z1) -> c2(F(encArg(z0), encArg(z1))) S tuples: F(g(h(z0, z1)), f(a, a)) -> c8 K tuples:none Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c_1, c1_2, c3_3, c8, c2_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(g(h(z0, z1)), f(a, a)) -> c8 We considered the (Usable) Rules:none And the Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(h(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1)) -> c3(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(g(h(z0, z1)), f(a, a)) -> c8 ENCODE_F(z0, z1) -> c2(F(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2)) = [1] POL(F(x_1, x_2)) = [1] POL(a) = [1] POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c8) = 0 POL(cons_f(x_1, x_2)) = [1] + x_1 + x_2 POL(encArg(x_1)) = [1] POL(f(x_1, x_2)) = [1] POL(g(x_1)) = [1] + x_1 POL(h(x_1, x_2)) = [1] + x_1 + x_2 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(h(z0, z1)) -> h(encArg(z0), encArg(z1)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(g(h(z0, z1)), f(a, a)) -> f(h(z0, z0), g(f(z1, a))) Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(h(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_f(z0, z1)) -> c3(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(g(h(z0, z1)), f(a, a)) -> c8 ENCODE_F(z0, z1) -> c2(F(encArg(z0), encArg(z1))) S tuples:none K tuples: F(g(h(z0, z1)), f(a, a)) -> c8 Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c_1, c1_2, c3_3, c8, c2_1 ---------------------------------------- (19) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (20) BOUNDS(1, 1)