/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^2, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 232 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 239 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 2393 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^2, INF) (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 38 ms] (24) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: fac(s(x)) -> *(fac(p(s(x))), s(x)) p(s(0)) -> 0 p(s(s(x))) -> s(p(s(x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(0) -> 0 encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: fac(s(x)) -> *(fac(p(s(x))), s(x)) p(s(0)) -> 0 p(s(s(x))) -> s(p(s(x))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(0) -> 0 encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: fac(s(x)) -> *(fac(p(s(x))), s(x)) p(s(0)) -> 0 p(s(s(x))) -> s(p(s(x))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(0) -> 0 encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: fac(s(x)) -> *'(fac(p(s(x))), s(x)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(0') -> 0' encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0' Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: fac(s(x)) -> *'(fac(p(s(x))), s(x)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(0') -> 0' encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0' Types: fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p s :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p *' :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p 0' :: s:*':0':cons_fac:cons_p encArg :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p cons_fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p cons_p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_s :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_* :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_0 :: s:*':0':cons_fac:cons_p hole_s:*':0':cons_fac:cons_p1_3 :: s:*':0':cons_fac:cons_p gen_s:*':0':cons_fac:cons_p2_3 :: Nat -> s:*':0':cons_fac:cons_p ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: fac, p, encArg They will be analysed ascendingly in the following order: p < fac fac < encArg p < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: fac(s(x)) -> *'(fac(p(s(x))), s(x)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(0') -> 0' encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0' Types: fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p s :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p *' :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p 0' :: s:*':0':cons_fac:cons_p encArg :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p cons_fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p cons_p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_s :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_* :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_0 :: s:*':0':cons_fac:cons_p hole_s:*':0':cons_fac:cons_p1_3 :: s:*':0':cons_fac:cons_p gen_s:*':0':cons_fac:cons_p2_3 :: Nat -> s:*':0':cons_fac:cons_p Generator Equations: gen_s:*':0':cons_fac:cons_p2_3(0) <=> 0' gen_s:*':0':cons_fac:cons_p2_3(+(x, 1)) <=> s(gen_s:*':0':cons_fac:cons_p2_3(x)) The following defined symbols remain to be analysed: p, fac, encArg They will be analysed ascendingly in the following order: p < fac fac < encArg p < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_s:*':0':cons_fac:cons_p2_3(+(1, n4_3))) -> gen_s:*':0':cons_fac:cons_p2_3(n4_3), rt in Omega(1 + n4_3) Induction Base: p(gen_s:*':0':cons_fac:cons_p2_3(+(1, 0))) ->_R^Omega(1) 0' Induction Step: p(gen_s:*':0':cons_fac:cons_p2_3(+(1, +(n4_3, 1)))) ->_R^Omega(1) s(p(s(gen_s:*':0':cons_fac:cons_p2_3(n4_3)))) ->_IH s(gen_s:*':0':cons_fac:cons_p2_3(c5_3)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: fac(s(x)) -> *'(fac(p(s(x))), s(x)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(0') -> 0' encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0' Types: fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p s :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p *' :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p 0' :: s:*':0':cons_fac:cons_p encArg :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p cons_fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p cons_p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_s :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_* :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_0 :: s:*':0':cons_fac:cons_p hole_s:*':0':cons_fac:cons_p1_3 :: s:*':0':cons_fac:cons_p gen_s:*':0':cons_fac:cons_p2_3 :: Nat -> s:*':0':cons_fac:cons_p Generator Equations: gen_s:*':0':cons_fac:cons_p2_3(0) <=> 0' gen_s:*':0':cons_fac:cons_p2_3(+(x, 1)) <=> s(gen_s:*':0':cons_fac:cons_p2_3(x)) The following defined symbols remain to be analysed: p, fac, encArg They will be analysed ascendingly in the following order: p < fac fac < encArg p < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: fac(s(x)) -> *'(fac(p(s(x))), s(x)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(0') -> 0' encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0' Types: fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p s :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p *' :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p 0' :: s:*':0':cons_fac:cons_p encArg :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p cons_fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p cons_p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_s :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_* :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_0 :: s:*':0':cons_fac:cons_p hole_s:*':0':cons_fac:cons_p1_3 :: s:*':0':cons_fac:cons_p gen_s:*':0':cons_fac:cons_p2_3 :: Nat -> s:*':0':cons_fac:cons_p Lemmas: p(gen_s:*':0':cons_fac:cons_p2_3(+(1, n4_3))) -> gen_s:*':0':cons_fac:cons_p2_3(n4_3), rt in Omega(1 + n4_3) Generator Equations: gen_s:*':0':cons_fac:cons_p2_3(0) <=> 0' gen_s:*':0':cons_fac:cons_p2_3(+(x, 1)) <=> s(gen_s:*':0':cons_fac:cons_p2_3(x)) The following defined symbols remain to be analysed: fac, encArg They will be analysed ascendingly in the following order: fac < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: fac(gen_s:*':0':cons_fac:cons_p2_3(+(1, n261_3))) -> *3_3, rt in Omega(n261_3 + n261_3^2) Induction Base: fac(gen_s:*':0':cons_fac:cons_p2_3(+(1, 0))) Induction Step: fac(gen_s:*':0':cons_fac:cons_p2_3(+(1, +(n261_3, 1)))) ->_R^Omega(1) *'(fac(p(s(gen_s:*':0':cons_fac:cons_p2_3(+(1, n261_3))))), s(gen_s:*':0':cons_fac:cons_p2_3(+(1, n261_3)))) ->_L^Omega(2 + n261_3) *'(fac(gen_s:*':0':cons_fac:cons_p2_3(+(1, n261_3))), s(gen_s:*':0':cons_fac:cons_p2_3(+(1, n261_3)))) ->_IH *'(*3_3, s(gen_s:*':0':cons_fac:cons_p2_3(+(1, n261_3)))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^2 for the following obligation: Innermost TRS: Rules: fac(s(x)) -> *'(fac(p(s(x))), s(x)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(0') -> 0' encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0' Types: fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p s :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p *' :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p 0' :: s:*':0':cons_fac:cons_p encArg :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p cons_fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p cons_p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_s :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_* :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_0 :: s:*':0':cons_fac:cons_p hole_s:*':0':cons_fac:cons_p1_3 :: s:*':0':cons_fac:cons_p gen_s:*':0':cons_fac:cons_p2_3 :: Nat -> s:*':0':cons_fac:cons_p Lemmas: p(gen_s:*':0':cons_fac:cons_p2_3(+(1, n4_3))) -> gen_s:*':0':cons_fac:cons_p2_3(n4_3), rt in Omega(1 + n4_3) Generator Equations: gen_s:*':0':cons_fac:cons_p2_3(0) <=> 0' gen_s:*':0':cons_fac:cons_p2_3(+(x, 1)) <=> s(gen_s:*':0':cons_fac:cons_p2_3(x)) The following defined symbols remain to be analysed: fac, encArg They will be analysed ascendingly in the following order: fac < encArg ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^2, INF) ---------------------------------------- (22) Obligation: Innermost TRS: Rules: fac(s(x)) -> *'(fac(p(s(x))), s(x)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(0') -> 0' encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0' Types: fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p s :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p *' :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p 0' :: s:*':0':cons_fac:cons_p encArg :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p cons_fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p cons_p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_fac :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_s :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_* :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_p :: s:*':0':cons_fac:cons_p -> s:*':0':cons_fac:cons_p encode_0 :: s:*':0':cons_fac:cons_p hole_s:*':0':cons_fac:cons_p1_3 :: s:*':0':cons_fac:cons_p gen_s:*':0':cons_fac:cons_p2_3 :: Nat -> s:*':0':cons_fac:cons_p Lemmas: p(gen_s:*':0':cons_fac:cons_p2_3(+(1, n4_3))) -> gen_s:*':0':cons_fac:cons_p2_3(n4_3), rt in Omega(1 + n4_3) fac(gen_s:*':0':cons_fac:cons_p2_3(+(1, n261_3))) -> *3_3, rt in Omega(n261_3 + n261_3^2) Generator Equations: gen_s:*':0':cons_fac:cons_p2_3(0) <=> 0' gen_s:*':0':cons_fac:cons_p2_3(+(x, 1)) <=> s(gen_s:*':0':cons_fac:cons_p2_3(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_s:*':0':cons_fac:cons_p2_3(n918_3)) -> gen_s:*':0':cons_fac:cons_p2_3(n918_3), rt in Omega(0) Induction Base: encArg(gen_s:*':0':cons_fac:cons_p2_3(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_s:*':0':cons_fac:cons_p2_3(+(n918_3, 1))) ->_R^Omega(0) s(encArg(gen_s:*':0':cons_fac:cons_p2_3(n918_3))) ->_IH s(gen_s:*':0':cons_fac:cons_p2_3(c919_3)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (24) BOUNDS(1, INF)