/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 175 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxWeightedTrs (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedTrs (11) CompletionProof [UPPER BOUND(ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) InliningProof [UPPER BOUND(ID), 327 ms] (18) CpxRNTS (19) SimplificationProof [BOTH BOUNDS(ID, ID), 6 ms] (20) CpxRNTS (21) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 192 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 6 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 862 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 349 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 46 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 149 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 66 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 771 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 390 ms] (52) CpxRNTS (53) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 371 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 58 ms] (58) CpxRNTS (59) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 170 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (64) CpxRNTS (65) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 147 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (70) CpxRNTS (71) FinalProof [FINISHED, 0 ms] (72) BOUNDS(1, n^2) (73) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (74) CpxRelTRS (75) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (76) typed CpxTrs (77) OrderProof [LOWER BOUND(ID), 0 ms] (78) typed CpxTrs (79) RewriteLemmaProof [LOWER BOUND(ID), 185 ms] (80) proven lower bound (81) LowerBoundPropagationProof [FINISHED, 0 ms] (82) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: and(x, false) -> false and(x, not(false)) -> x not(not(x)) -> x implies(false, y) -> not(false) implies(x, false) -> not(x) implies(not(x), not(y)) -> implies(y, and(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(false) -> false encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_implies(x_1, x_2)) -> implies(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_false -> false encode_not(x_1) -> not(encArg(x_1)) encode_implies(x_1, x_2) -> implies(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: and(x, false) -> false and(x, not(false)) -> x not(not(x)) -> x implies(false, y) -> not(false) implies(x, false) -> not(x) implies(not(x), not(y)) -> implies(y, and(x, y)) The (relative) TRS S consists of the following rules: encArg(false) -> false encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_implies(x_1, x_2)) -> implies(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_false -> false encode_not(x_1) -> not(encArg(x_1)) encode_implies(x_1, x_2) -> implies(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: and(x, false) -> false and(x, not(false)) -> x not(not(x)) -> x implies(false, y) -> not(false) implies(x, false) -> not(x) implies(not(x), not(y)) -> implies(y, and(x, y)) The (relative) TRS S consists of the following rules: encArg(false) -> false encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_implies(x_1, x_2)) -> implies(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_false -> false encode_not(x_1) -> not(encArg(x_1)) encode_implies(x_1, x_2) -> implies(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: and(x, false) -> false implies(false, y) -> not(false) implies(x, false) -> not(x) and(x, c_not(false)) -> x not(c_not(x)) -> x implies(c_not(x), c_not(y)) -> implies(y, and(x, y)) The (relative) TRS S consists of the following rules: encArg(false) -> false encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_implies(x_1, x_2)) -> implies(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_false -> false encode_not(x_1) -> not(encArg(x_1)) encode_implies(x_1, x_2) -> implies(encArg(x_1), encArg(x_2)) not(x0) -> c_not(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (7) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: and(x, false) -> false [1] implies(false, y) -> not(false) [1] implies(x, false) -> not(x) [1] and(x, c_not(false)) -> x [1] not(c_not(x)) -> x [1] implies(c_not(x), c_not(y)) -> implies(y, and(x, y)) [1] encArg(false) -> false [0] encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) [0] encArg(cons_not(x_1)) -> not(encArg(x_1)) [0] encArg(cons_implies(x_1, x_2)) -> implies(encArg(x_1), encArg(x_2)) [0] encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) [0] encode_false -> false [0] encode_not(x_1) -> not(encArg(x_1)) [0] encode_implies(x_1, x_2) -> implies(encArg(x_1), encArg(x_2)) [0] not(x0) -> c_not(x0) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: and(x, false) -> false [1] implies(false, y) -> not(false) [1] implies(x, false) -> not(x) [1] and(x, c_not(false)) -> x [1] not(c_not(x)) -> x [1] implies(c_not(x), c_not(y)) -> implies(y, and(x, y)) [1] encArg(false) -> false [0] encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) [0] encArg(cons_not(x_1)) -> not(encArg(x_1)) [0] encArg(cons_implies(x_1, x_2)) -> implies(encArg(x_1), encArg(x_2)) [0] encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) [0] encode_false -> false [0] encode_not(x_1) -> not(encArg(x_1)) [0] encode_implies(x_1, x_2) -> implies(encArg(x_1), encArg(x_2)) [0] not(x0) -> c_not(x0) [0] The TRS has the following type information: and :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies false :: false:c_not:cons_and:cons_not:cons_implies implies :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies not :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies c_not :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies encArg :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies cons_and :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies cons_not :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies cons_implies :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies encode_and :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies encode_false :: false:c_not:cons_and:cons_not:cons_implies encode_not :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies encode_implies :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies Rewrite Strategy: INNERMOST ---------------------------------------- (11) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: and_2 implies_2 encArg_1 encode_and_2 encode_false encode_not_1 encode_implies_2 not_1 Due to the following rules being added: encArg(v0) -> false [0] encode_and(v0, v1) -> false [0] encode_false -> false [0] encode_not(v0) -> false [0] encode_implies(v0, v1) -> false [0] not(v0) -> false [0] and(v0, v1) -> false [0] implies(v0, v1) -> false [0] And the following fresh constants: none ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: and(x, false) -> false [1] implies(false, y) -> not(false) [1] implies(x, false) -> not(x) [1] and(x, c_not(false)) -> x [1] not(c_not(x)) -> x [1] implies(c_not(x), c_not(y)) -> implies(y, and(x, y)) [1] encArg(false) -> false [0] encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) [0] encArg(cons_not(x_1)) -> not(encArg(x_1)) [0] encArg(cons_implies(x_1, x_2)) -> implies(encArg(x_1), encArg(x_2)) [0] encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) [0] encode_false -> false [0] encode_not(x_1) -> not(encArg(x_1)) [0] encode_implies(x_1, x_2) -> implies(encArg(x_1), encArg(x_2)) [0] not(x0) -> c_not(x0) [0] encArg(v0) -> false [0] encode_and(v0, v1) -> false [0] encode_false -> false [0] encode_not(v0) -> false [0] encode_implies(v0, v1) -> false [0] not(v0) -> false [0] and(v0, v1) -> false [0] implies(v0, v1) -> false [0] The TRS has the following type information: and :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies false :: false:c_not:cons_and:cons_not:cons_implies implies :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies not :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies c_not :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies encArg :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies cons_and :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies cons_not :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies cons_implies :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies encode_and :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies encode_false :: false:c_not:cons_and:cons_not:cons_implies encode_not :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies encode_implies :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies Rewrite Strategy: INNERMOST ---------------------------------------- (13) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: and(x, false) -> false [1] implies(false, y) -> not(false) [1] implies(x, false) -> not(x) [1] and(x, c_not(false)) -> x [1] not(c_not(x)) -> x [1] implies(c_not(x), c_not(false)) -> implies(false, false) [2] implies(c_not(x), c_not(c_not(false))) -> implies(c_not(false), x) [2] implies(c_not(x), c_not(y)) -> implies(y, false) [1] encArg(false) -> false [0] encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) [0] encArg(cons_not(false)) -> not(false) [0] encArg(cons_not(cons_and(x_117, x_211))) -> not(and(encArg(x_117), encArg(x_211))) [0] encArg(cons_not(cons_not(x_118))) -> not(not(encArg(x_118))) [0] encArg(cons_not(cons_implies(x_119, x_212))) -> not(implies(encArg(x_119), encArg(x_212))) [0] encArg(cons_not(x_1)) -> not(false) [0] encArg(cons_implies(x_1, x_2)) -> implies(encArg(x_1), encArg(x_2)) [0] encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) [0] encode_false -> false [0] encode_not(false) -> not(false) [0] encode_not(cons_and(x_156, x_237)) -> not(and(encArg(x_156), encArg(x_237))) [0] encode_not(cons_not(x_157)) -> not(not(encArg(x_157))) [0] encode_not(cons_implies(x_158, x_238)) -> not(implies(encArg(x_158), encArg(x_238))) [0] encode_not(x_1) -> not(false) [0] encode_implies(x_1, x_2) -> implies(encArg(x_1), encArg(x_2)) [0] not(x0) -> c_not(x0) [0] encArg(v0) -> false [0] encode_and(v0, v1) -> false [0] encode_false -> false [0] encode_not(v0) -> false [0] encode_implies(v0, v1) -> false [0] not(v0) -> false [0] and(v0, v1) -> false [0] implies(v0, v1) -> false [0] The TRS has the following type information: and :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies false :: false:c_not:cons_and:cons_not:cons_implies implies :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies not :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies c_not :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies encArg :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies cons_and :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies cons_not :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies cons_implies :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies encode_and :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies encode_false :: false:c_not:cons_and:cons_not:cons_implies encode_not :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies encode_implies :: false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies -> false:c_not:cons_and:cons_not:cons_implies Rewrite Strategy: INNERMOST ---------------------------------------- (15) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: false => 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> x :|: x >= 0, z' = 1 + 0, z = x and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encArg(z) -{ 0 }-> not(not(encArg(x_118))) :|: z = 1 + (1 + x_118), x_118 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> not(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> not(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_and(z, z') -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_implies(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_not(z) -{ 0 }-> not(not(encArg(x_157))) :|: z = 1 + x_157, x_157 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> not(0) :|: z = 0 encode_not(z) -{ 0 }-> not(0) :|: x_1 >= 0, z = x_1 encode_not(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 implies(z, z') -{ 1 }-> not(x) :|: x >= 0, z = x, z' = 0 implies(z, z') -{ 1 }-> not(0) :|: y >= 0, z = 0, z' = y implies(z, z') -{ 1 }-> implies(y, 0) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x implies(z, z') -{ 2 }-> implies(0, 0) :|: x >= 0, z' = 1 + 0, z = 1 + x implies(z, z') -{ 2 }-> implies(1 + 0, x) :|: z' = 1 + (1 + 0), x >= 0, z = 1 + x implies(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 not(z) -{ 1 }-> x :|: x >= 0, z = 1 + x not(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 not(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 ---------------------------------------- (17) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: and(z, z') -{ 1 }-> x :|: x >= 0, z' = 1 + 0, z = x and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 not(z) -{ 1 }-> x :|: x >= 0, z = 1 + x not(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 not(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> x :|: x >= 0, z' = 1 + 0, z = x and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encArg(z) -{ 0 }-> not(not(encArg(x_118))) :|: z = 1 + (1 + x_118), x_118 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + x_1, x_1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + x_1, x_1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_implies(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_not(z) -{ 0 }-> not(not(encArg(x_157))) :|: z = 1 + x_157, x_157 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: x_1 >= 0, z = x_1, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: x_1 >= 0, z = x_1, 0 = x0, x0 >= 0 implies(z, z') -{ 2 }-> x' :|: x >= 0, z = x, z' = 0, x' >= 0, x = 1 + x' implies(z, z') -{ 1 }-> implies(y, 0) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x implies(z, z') -{ 2 }-> implies(0, 0) :|: x >= 0, z' = 1 + 0, z = 1 + x implies(z, z') -{ 2 }-> implies(1 + 0, x) :|: z' = 1 + (1 + 0), x >= 0, z = 1 + x implies(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 implies(z, z') -{ 1 }-> 0 :|: y >= 0, z = 0, z' = y, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0, v0 >= 0, x = v0 implies(z, z') -{ 1 }-> 1 + x0 :|: y >= 0, z = 0, z' = y, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: x >= 0, z = x, z' = 0, x = x0, x0 >= 0 not(z) -{ 1 }-> x :|: x >= 0, z = 1 + x not(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 not(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 ---------------------------------------- (19) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 2 }-> implies(0, 0) :|: z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 1 }-> implies(z' - 1, 0) :|: z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 2 }-> implies(1 + 0, z - 1) :|: z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 ---------------------------------------- (21) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { not } { implies } { encode_false } { and } { encArg } { encode_not } { encode_and } { encode_implies } ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 2 }-> implies(0, 0) :|: z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 1 }-> implies(z' - 1, 0) :|: z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 2 }-> implies(1 + 0, z - 1) :|: z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {not}, {implies}, {encode_false}, {and}, {encArg}, {encode_not}, {encode_and}, {encode_implies} ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 2 }-> implies(0, 0) :|: z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 1 }-> implies(z' - 1, 0) :|: z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 2 }-> implies(1 + 0, z - 1) :|: z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {not}, {implies}, {encode_false}, {and}, {encArg}, {encode_not}, {encode_and}, {encode_implies} ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: not after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 2 }-> implies(0, 0) :|: z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 1 }-> implies(z' - 1, 0) :|: z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 2 }-> implies(1 + 0, z - 1) :|: z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {not}, {implies}, {encode_false}, {and}, {encArg}, {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: not after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 2 }-> implies(0, 0) :|: z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 1 }-> implies(z' - 1, 0) :|: z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 2 }-> implies(1 + 0, z - 1) :|: z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {implies}, {encode_false}, {and}, {encArg}, {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 2 }-> implies(0, 0) :|: z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 1 }-> implies(z' - 1, 0) :|: z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 2 }-> implies(1 + 0, z - 1) :|: z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {implies}, {encode_false}, {and}, {encArg}, {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: implies after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z + z' ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 2 }-> implies(0, 0) :|: z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 1 }-> implies(z' - 1, 0) :|: z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 2 }-> implies(1 + 0, z - 1) :|: z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {implies}, {encode_false}, {and}, {encArg}, {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: ?, size: O(n^1) [1 + z + z'] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: implies after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 5 + 2*z ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 2 }-> implies(0, 0) :|: z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 1 }-> implies(z' - 1, 0) :|: z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 2 }-> implies(1 + 0, z - 1) :|: z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_false}, {and}, {encArg}, {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_false}, {and}, {encArg}, {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_false after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_false}, {and}, {encArg}, {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: ?, size: O(1) [0] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_false after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {and}, {encArg}, {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {and}, {encArg}, {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: and after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {and}, {encArg}, {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] and: runtime: ?, size: O(n^1) [z] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: and after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] and: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] and: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] and: runtime: O(1) [1], size: O(n^1) [z] encArg: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 5*z + 2*z^2 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(implies(encArg(x_119), encArg(x_212))) :|: x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 0 }-> not(and(encArg(x_117), encArg(x_211))) :|: x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 0 }-> implies(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 0 }-> implies(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(implies(encArg(x_158), encArg(x_238))) :|: z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 0 }-> not(and(encArg(x_156), encArg(x_237))) :|: x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] and: runtime: O(1) [1], size: O(n^1) [z] encArg: runtime: O(n^2) [5*z + 2*z^2], size: O(n^1) [1 + z] ---------------------------------------- (53) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ -3*z + 2*z^2 }-> s15 :|: s13 >= 0, s13 <= z - 2 + 1, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ 6 + 2*s16 + 5*x_119 + 2*x_119^2 + 5*x_212 + 2*x_212^2 }-> s19 :|: s16 >= 0, s16 <= x_119 + 1, s17 >= 0, s17 <= x_212 + 1, s18 >= 0, s18 <= s16 + s17 + 1, s19 >= 0, s19 <= s18 + 1, x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 5 + 2*s1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= s1 + s2 + 1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 5*x_117 + 2*x_117^2 + 5*x_211 + 2*x_211^2 }-> s30 :|: s27 >= 0, s27 <= x_117 + 1, s28 >= 0, s28 <= x_211 + 1, s29 >= 0, s29 <= s27, s30 >= 0, s30 <= s29 + 1, x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s9 :|: s7 >= 0, s7 <= x_1 + 1, s8 >= 0, s8 <= x_2 + 1, s9 >= 0, s9 <= s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 1 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s12 :|: s10 >= 0, s10 <= z + 1, s11 >= 0, s11 <= z' + 1, s12 >= 0, s12 <= s10, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 5 + 2*s4 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s6 :|: s4 >= 0, s4 <= z + 1, s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= s4 + s5 + 1, z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ -1 + z + 2*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 1, s21 >= 0, s21 <= s20 + 1, s22 >= 0, s22 <= s21 + 1, z - 1 >= 0 encode_not(z) -{ 6 + 2*s23 + 5*x_158 + 2*x_158^2 + 5*x_238 + 2*x_238^2 }-> s26 :|: s23 >= 0, s23 <= x_158 + 1, s24 >= 0, s24 <= x_238 + 1, s25 >= 0, s25 <= s23 + s24 + 1, s26 >= 0, s26 <= s25 + 1, z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 2 + 5*x_156 + 2*x_156^2 + 5*x_237 + 2*x_237^2 }-> s34 :|: s31 >= 0, s31 <= x_156 + 1, s32 >= 0, s32 <= x_237 + 1, s33 >= 0, s33 <= s31, s34 >= 0, s34 <= s33 + 1, x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] and: runtime: O(1) [1], size: O(n^1) [z] encArg: runtime: O(n^2) [5*z + 2*z^2], size: O(n^1) [1 + z] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_not after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + z ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ -3*z + 2*z^2 }-> s15 :|: s13 >= 0, s13 <= z - 2 + 1, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ 6 + 2*s16 + 5*x_119 + 2*x_119^2 + 5*x_212 + 2*x_212^2 }-> s19 :|: s16 >= 0, s16 <= x_119 + 1, s17 >= 0, s17 <= x_212 + 1, s18 >= 0, s18 <= s16 + s17 + 1, s19 >= 0, s19 <= s18 + 1, x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 5 + 2*s1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= s1 + s2 + 1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 5*x_117 + 2*x_117^2 + 5*x_211 + 2*x_211^2 }-> s30 :|: s27 >= 0, s27 <= x_117 + 1, s28 >= 0, s28 <= x_211 + 1, s29 >= 0, s29 <= s27, s30 >= 0, s30 <= s29 + 1, x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s9 :|: s7 >= 0, s7 <= x_1 + 1, s8 >= 0, s8 <= x_2 + 1, s9 >= 0, s9 <= s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 1 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s12 :|: s10 >= 0, s10 <= z + 1, s11 >= 0, s11 <= z' + 1, s12 >= 0, s12 <= s10, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 5 + 2*s4 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s6 :|: s4 >= 0, s4 <= z + 1, s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= s4 + s5 + 1, z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ -1 + z + 2*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 1, s21 >= 0, s21 <= s20 + 1, s22 >= 0, s22 <= s21 + 1, z - 1 >= 0 encode_not(z) -{ 6 + 2*s23 + 5*x_158 + 2*x_158^2 + 5*x_238 + 2*x_238^2 }-> s26 :|: s23 >= 0, s23 <= x_158 + 1, s24 >= 0, s24 <= x_238 + 1, s25 >= 0, s25 <= s23 + s24 + 1, s26 >= 0, s26 <= s25 + 1, z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 2 + 5*x_156 + 2*x_156^2 + 5*x_237 + 2*x_237^2 }-> s34 :|: s31 >= 0, s31 <= x_156 + 1, s32 >= 0, s32 <= x_237 + 1, s33 >= 0, s33 <= s31, s34 >= 0, s34 <= s33 + 1, x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_not}, {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] and: runtime: O(1) [1], size: O(n^1) [z] encArg: runtime: O(n^2) [5*z + 2*z^2], size: O(n^1) [1 + z] encode_not: runtime: ?, size: O(n^1) [3 + z] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_not after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 10 + 23*z + 10*z^2 ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ -3*z + 2*z^2 }-> s15 :|: s13 >= 0, s13 <= z - 2 + 1, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ 6 + 2*s16 + 5*x_119 + 2*x_119^2 + 5*x_212 + 2*x_212^2 }-> s19 :|: s16 >= 0, s16 <= x_119 + 1, s17 >= 0, s17 <= x_212 + 1, s18 >= 0, s18 <= s16 + s17 + 1, s19 >= 0, s19 <= s18 + 1, x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 5 + 2*s1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= s1 + s2 + 1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 5*x_117 + 2*x_117^2 + 5*x_211 + 2*x_211^2 }-> s30 :|: s27 >= 0, s27 <= x_117 + 1, s28 >= 0, s28 <= x_211 + 1, s29 >= 0, s29 <= s27, s30 >= 0, s30 <= s29 + 1, x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s9 :|: s7 >= 0, s7 <= x_1 + 1, s8 >= 0, s8 <= x_2 + 1, s9 >= 0, s9 <= s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 1 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s12 :|: s10 >= 0, s10 <= z + 1, s11 >= 0, s11 <= z' + 1, s12 >= 0, s12 <= s10, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 5 + 2*s4 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s6 :|: s4 >= 0, s4 <= z + 1, s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= s4 + s5 + 1, z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ -1 + z + 2*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 1, s21 >= 0, s21 <= s20 + 1, s22 >= 0, s22 <= s21 + 1, z - 1 >= 0 encode_not(z) -{ 6 + 2*s23 + 5*x_158 + 2*x_158^2 + 5*x_238 + 2*x_238^2 }-> s26 :|: s23 >= 0, s23 <= x_158 + 1, s24 >= 0, s24 <= x_238 + 1, s25 >= 0, s25 <= s23 + s24 + 1, s26 >= 0, s26 <= s25 + 1, z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 2 + 5*x_156 + 2*x_156^2 + 5*x_237 + 2*x_237^2 }-> s34 :|: s31 >= 0, s31 <= x_156 + 1, s32 >= 0, s32 <= x_237 + 1, s33 >= 0, s33 <= s31, s34 >= 0, s34 <= s33 + 1, x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] and: runtime: O(1) [1], size: O(n^1) [z] encArg: runtime: O(n^2) [5*z + 2*z^2], size: O(n^1) [1 + z] encode_not: runtime: O(n^2) [10 + 23*z + 10*z^2], size: O(n^1) [3 + z] ---------------------------------------- (59) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ -3*z + 2*z^2 }-> s15 :|: s13 >= 0, s13 <= z - 2 + 1, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ 6 + 2*s16 + 5*x_119 + 2*x_119^2 + 5*x_212 + 2*x_212^2 }-> s19 :|: s16 >= 0, s16 <= x_119 + 1, s17 >= 0, s17 <= x_212 + 1, s18 >= 0, s18 <= s16 + s17 + 1, s19 >= 0, s19 <= s18 + 1, x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 5 + 2*s1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= s1 + s2 + 1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 5*x_117 + 2*x_117^2 + 5*x_211 + 2*x_211^2 }-> s30 :|: s27 >= 0, s27 <= x_117 + 1, s28 >= 0, s28 <= x_211 + 1, s29 >= 0, s29 <= s27, s30 >= 0, s30 <= s29 + 1, x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s9 :|: s7 >= 0, s7 <= x_1 + 1, s8 >= 0, s8 <= x_2 + 1, s9 >= 0, s9 <= s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 1 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s12 :|: s10 >= 0, s10 <= z + 1, s11 >= 0, s11 <= z' + 1, s12 >= 0, s12 <= s10, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 5 + 2*s4 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s6 :|: s4 >= 0, s4 <= z + 1, s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= s4 + s5 + 1, z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ -1 + z + 2*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 1, s21 >= 0, s21 <= s20 + 1, s22 >= 0, s22 <= s21 + 1, z - 1 >= 0 encode_not(z) -{ 6 + 2*s23 + 5*x_158 + 2*x_158^2 + 5*x_238 + 2*x_238^2 }-> s26 :|: s23 >= 0, s23 <= x_158 + 1, s24 >= 0, s24 <= x_238 + 1, s25 >= 0, s25 <= s23 + s24 + 1, s26 >= 0, s26 <= s25 + 1, z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 2 + 5*x_156 + 2*x_156^2 + 5*x_237 + 2*x_237^2 }-> s34 :|: s31 >= 0, s31 <= x_156 + 1, s32 >= 0, s32 <= x_237 + 1, s33 >= 0, s33 <= s31, s34 >= 0, s34 <= s33 + 1, x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] and: runtime: O(1) [1], size: O(n^1) [z] encArg: runtime: O(n^2) [5*z + 2*z^2], size: O(n^1) [1 + z] encode_not: runtime: O(n^2) [10 + 23*z + 10*z^2], size: O(n^1) [3 + z] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_and after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ -3*z + 2*z^2 }-> s15 :|: s13 >= 0, s13 <= z - 2 + 1, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ 6 + 2*s16 + 5*x_119 + 2*x_119^2 + 5*x_212 + 2*x_212^2 }-> s19 :|: s16 >= 0, s16 <= x_119 + 1, s17 >= 0, s17 <= x_212 + 1, s18 >= 0, s18 <= s16 + s17 + 1, s19 >= 0, s19 <= s18 + 1, x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 5 + 2*s1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= s1 + s2 + 1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 5*x_117 + 2*x_117^2 + 5*x_211 + 2*x_211^2 }-> s30 :|: s27 >= 0, s27 <= x_117 + 1, s28 >= 0, s28 <= x_211 + 1, s29 >= 0, s29 <= s27, s30 >= 0, s30 <= s29 + 1, x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s9 :|: s7 >= 0, s7 <= x_1 + 1, s8 >= 0, s8 <= x_2 + 1, s9 >= 0, s9 <= s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 1 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s12 :|: s10 >= 0, s10 <= z + 1, s11 >= 0, s11 <= z' + 1, s12 >= 0, s12 <= s10, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 5 + 2*s4 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s6 :|: s4 >= 0, s4 <= z + 1, s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= s4 + s5 + 1, z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ -1 + z + 2*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 1, s21 >= 0, s21 <= s20 + 1, s22 >= 0, s22 <= s21 + 1, z - 1 >= 0 encode_not(z) -{ 6 + 2*s23 + 5*x_158 + 2*x_158^2 + 5*x_238 + 2*x_238^2 }-> s26 :|: s23 >= 0, s23 <= x_158 + 1, s24 >= 0, s24 <= x_238 + 1, s25 >= 0, s25 <= s23 + s24 + 1, s26 >= 0, s26 <= s25 + 1, z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 2 + 5*x_156 + 2*x_156^2 + 5*x_237 + 2*x_237^2 }-> s34 :|: s31 >= 0, s31 <= x_156 + 1, s32 >= 0, s32 <= x_237 + 1, s33 >= 0, s33 <= s31, s34 >= 0, s34 <= s33 + 1, x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_and}, {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] and: runtime: O(1) [1], size: O(n^1) [z] encArg: runtime: O(n^2) [5*z + 2*z^2], size: O(n^1) [1 + z] encode_not: runtime: O(n^2) [10 + 23*z + 10*z^2], size: O(n^1) [3 + z] encode_and: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_and after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 5*z + 2*z^2 + 5*z' + 2*z'^2 ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ -3*z + 2*z^2 }-> s15 :|: s13 >= 0, s13 <= z - 2 + 1, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ 6 + 2*s16 + 5*x_119 + 2*x_119^2 + 5*x_212 + 2*x_212^2 }-> s19 :|: s16 >= 0, s16 <= x_119 + 1, s17 >= 0, s17 <= x_212 + 1, s18 >= 0, s18 <= s16 + s17 + 1, s19 >= 0, s19 <= s18 + 1, x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 5 + 2*s1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= s1 + s2 + 1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 5*x_117 + 2*x_117^2 + 5*x_211 + 2*x_211^2 }-> s30 :|: s27 >= 0, s27 <= x_117 + 1, s28 >= 0, s28 <= x_211 + 1, s29 >= 0, s29 <= s27, s30 >= 0, s30 <= s29 + 1, x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s9 :|: s7 >= 0, s7 <= x_1 + 1, s8 >= 0, s8 <= x_2 + 1, s9 >= 0, s9 <= s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 1 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s12 :|: s10 >= 0, s10 <= z + 1, s11 >= 0, s11 <= z' + 1, s12 >= 0, s12 <= s10, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 5 + 2*s4 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s6 :|: s4 >= 0, s4 <= z + 1, s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= s4 + s5 + 1, z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ -1 + z + 2*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 1, s21 >= 0, s21 <= s20 + 1, s22 >= 0, s22 <= s21 + 1, z - 1 >= 0 encode_not(z) -{ 6 + 2*s23 + 5*x_158 + 2*x_158^2 + 5*x_238 + 2*x_238^2 }-> s26 :|: s23 >= 0, s23 <= x_158 + 1, s24 >= 0, s24 <= x_238 + 1, s25 >= 0, s25 <= s23 + s24 + 1, s26 >= 0, s26 <= s25 + 1, z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 2 + 5*x_156 + 2*x_156^2 + 5*x_237 + 2*x_237^2 }-> s34 :|: s31 >= 0, s31 <= x_156 + 1, s32 >= 0, s32 <= x_237 + 1, s33 >= 0, s33 <= s31, s34 >= 0, s34 <= s33 + 1, x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] and: runtime: O(1) [1], size: O(n^1) [z] encArg: runtime: O(n^2) [5*z + 2*z^2], size: O(n^1) [1 + z] encode_not: runtime: O(n^2) [10 + 23*z + 10*z^2], size: O(n^1) [3 + z] encode_and: runtime: O(n^2) [1 + 5*z + 2*z^2 + 5*z' + 2*z'^2], size: O(n^1) [1 + z] ---------------------------------------- (65) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ -3*z + 2*z^2 }-> s15 :|: s13 >= 0, s13 <= z - 2 + 1, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ 6 + 2*s16 + 5*x_119 + 2*x_119^2 + 5*x_212 + 2*x_212^2 }-> s19 :|: s16 >= 0, s16 <= x_119 + 1, s17 >= 0, s17 <= x_212 + 1, s18 >= 0, s18 <= s16 + s17 + 1, s19 >= 0, s19 <= s18 + 1, x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 5 + 2*s1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= s1 + s2 + 1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 5*x_117 + 2*x_117^2 + 5*x_211 + 2*x_211^2 }-> s30 :|: s27 >= 0, s27 <= x_117 + 1, s28 >= 0, s28 <= x_211 + 1, s29 >= 0, s29 <= s27, s30 >= 0, s30 <= s29 + 1, x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s9 :|: s7 >= 0, s7 <= x_1 + 1, s8 >= 0, s8 <= x_2 + 1, s9 >= 0, s9 <= s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 1 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s12 :|: s10 >= 0, s10 <= z + 1, s11 >= 0, s11 <= z' + 1, s12 >= 0, s12 <= s10, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 5 + 2*s4 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s6 :|: s4 >= 0, s4 <= z + 1, s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= s4 + s5 + 1, z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ -1 + z + 2*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 1, s21 >= 0, s21 <= s20 + 1, s22 >= 0, s22 <= s21 + 1, z - 1 >= 0 encode_not(z) -{ 6 + 2*s23 + 5*x_158 + 2*x_158^2 + 5*x_238 + 2*x_238^2 }-> s26 :|: s23 >= 0, s23 <= x_158 + 1, s24 >= 0, s24 <= x_238 + 1, s25 >= 0, s25 <= s23 + s24 + 1, s26 >= 0, s26 <= s25 + 1, z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 2 + 5*x_156 + 2*x_156^2 + 5*x_237 + 2*x_237^2 }-> s34 :|: s31 >= 0, s31 <= x_156 + 1, s32 >= 0, s32 <= x_237 + 1, s33 >= 0, s33 <= s31, s34 >= 0, s34 <= s33 + 1, x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] and: runtime: O(1) [1], size: O(n^1) [z] encArg: runtime: O(n^2) [5*z + 2*z^2], size: O(n^1) [1 + z] encode_not: runtime: O(n^2) [10 + 23*z + 10*z^2], size: O(n^1) [3 + z] encode_and: runtime: O(n^2) [1 + 5*z + 2*z^2 + 5*z' + 2*z'^2], size: O(n^1) [1 + z] ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_implies after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + z + z' ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ -3*z + 2*z^2 }-> s15 :|: s13 >= 0, s13 <= z - 2 + 1, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ 6 + 2*s16 + 5*x_119 + 2*x_119^2 + 5*x_212 + 2*x_212^2 }-> s19 :|: s16 >= 0, s16 <= x_119 + 1, s17 >= 0, s17 <= x_212 + 1, s18 >= 0, s18 <= s16 + s17 + 1, s19 >= 0, s19 <= s18 + 1, x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 5 + 2*s1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= s1 + s2 + 1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 5*x_117 + 2*x_117^2 + 5*x_211 + 2*x_211^2 }-> s30 :|: s27 >= 0, s27 <= x_117 + 1, s28 >= 0, s28 <= x_211 + 1, s29 >= 0, s29 <= s27, s30 >= 0, s30 <= s29 + 1, x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s9 :|: s7 >= 0, s7 <= x_1 + 1, s8 >= 0, s8 <= x_2 + 1, s9 >= 0, s9 <= s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 1 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s12 :|: s10 >= 0, s10 <= z + 1, s11 >= 0, s11 <= z' + 1, s12 >= 0, s12 <= s10, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 5 + 2*s4 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s6 :|: s4 >= 0, s4 <= z + 1, s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= s4 + s5 + 1, z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ -1 + z + 2*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 1, s21 >= 0, s21 <= s20 + 1, s22 >= 0, s22 <= s21 + 1, z - 1 >= 0 encode_not(z) -{ 6 + 2*s23 + 5*x_158 + 2*x_158^2 + 5*x_238 + 2*x_238^2 }-> s26 :|: s23 >= 0, s23 <= x_158 + 1, s24 >= 0, s24 <= x_238 + 1, s25 >= 0, s25 <= s23 + s24 + 1, s26 >= 0, s26 <= s25 + 1, z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 2 + 5*x_156 + 2*x_156^2 + 5*x_237 + 2*x_237^2 }-> s34 :|: s31 >= 0, s31 <= x_156 + 1, s32 >= 0, s32 <= x_237 + 1, s33 >= 0, s33 <= s31, s34 >= 0, s34 <= s33 + 1, x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_implies} Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] and: runtime: O(1) [1], size: O(n^1) [z] encArg: runtime: O(n^2) [5*z + 2*z^2], size: O(n^1) [1 + z] encode_not: runtime: O(n^2) [10 + 23*z + 10*z^2], size: O(n^1) [3 + z] encode_and: runtime: O(n^2) [1 + 5*z + 2*z^2 + 5*z' + 2*z'^2], size: O(n^1) [1 + z] encode_implies: runtime: ?, size: O(n^1) [3 + z + z'] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_implies after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 7 + 7*z + 2*z^2 + 5*z' + 2*z'^2 ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> z :|: z >= 0, z' = 1 + 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ -3*z + 2*z^2 }-> s15 :|: s13 >= 0, s13 <= z - 2 + 1, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ 6 + 2*s16 + 5*x_119 + 2*x_119^2 + 5*x_212 + 2*x_212^2 }-> s19 :|: s16 >= 0, s16 <= x_119 + 1, s17 >= 0, s17 <= x_212 + 1, s18 >= 0, s18 <= s16 + s17 + 1, s19 >= 0, s19 <= s18 + 1, x_212 >= 0, z = 1 + (1 + x_119 + x_212), x_119 >= 0 encArg(z) -{ 5 + 2*s1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= s1 + s2 + 1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + 5*x_117 + 2*x_117^2 + 5*x_211 + 2*x_211^2 }-> s30 :|: s27 >= 0, s27 <= x_117 + 1, s28 >= 0, s28 <= x_211 + 1, s29 >= 0, s29 <= s27, s30 >= 0, s30 <= s29 + 1, x_117 >= 0, z = 1 + (1 + x_117 + x_211), x_211 >= 0 encArg(z) -{ 1 + 5*x_1 + 2*x_1^2 + 5*x_2 + 2*x_2^2 }-> s9 :|: s7 >= 0, s7 <= x_1 + 1, s8 >= 0, s8 <= x_2 + 1, s9 >= 0, s9 <= s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encode_and(z, z') -{ 1 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s12 :|: s10 >= 0, s10 <= z + 1, s11 >= 0, s11 <= z' + 1, s12 >= 0, s12 <= s10, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 0 :|: encode_implies(z, z') -{ 5 + 2*s4 + 5*z + 2*z^2 + 5*z' + 2*z'^2 }-> s6 :|: s4 >= 0, s4 <= z + 1, s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= s4 + s5 + 1, z >= 0, z' >= 0 encode_implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_not(z) -{ -1 + z + 2*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 1, s21 >= 0, s21 <= s20 + 1, s22 >= 0, s22 <= s21 + 1, z - 1 >= 0 encode_not(z) -{ 6 + 2*s23 + 5*x_158 + 2*x_158^2 + 5*x_238 + 2*x_238^2 }-> s26 :|: s23 >= 0, s23 <= x_158 + 1, s24 >= 0, s24 <= x_238 + 1, s25 >= 0, s25 <= s23 + s24 + 1, s26 >= 0, s26 <= s25 + 1, z = 1 + x_158 + x_238, x_158 >= 0, x_238 >= 0 encode_not(z) -{ 2 + 5*x_156 + 2*x_156^2 + 5*x_237 + 2*x_237^2 }-> s34 :|: s31 >= 0, s31 <= x_156 + 1, s32 >= 0, s32 <= x_237 + 1, s33 >= 0, s33 <= s31, s34 >= 0, s34 <= s33 + 1, x_237 >= 0, x_156 >= 0, z = 1 + x_156 + x_237 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_not(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 implies(z, z') -{ 7 }-> s :|: s >= 0, s <= 0 + 0 + 1, z - 1 >= 0, z' = 1 + 0 implies(z, z') -{ 9 }-> s' :|: s' >= 0, s' <= 1 + 0 + (z - 1) + 1, z' = 1 + (1 + 0), z - 1 >= 0 implies(z, z') -{ 4 + 2*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z - 1 >= 0, z' - 1 >= 0 implies(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 implies(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0, v0 >= 0, 0 = v0 implies(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 implies(z, z') -{ 2 }-> z - 1 :|: z >= 0, z' = 0, z - 1 >= 0 implies(z, z') -{ 1 }-> 1 + x0 :|: z' >= 0, z = 0, 0 = x0, x0 >= 0 implies(z, z') -{ 1 }-> 1 + z :|: z >= 0, z' = 0 not(z) -{ 0 }-> 0 :|: z >= 0 not(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 not(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: Previous analysis results are: not: runtime: O(1) [1], size: O(n^1) [1 + z] implies: runtime: O(n^1) [5 + 2*z], size: O(n^1) [1 + z + z'] encode_false: runtime: O(1) [0], size: O(1) [0] and: runtime: O(1) [1], size: O(n^1) [z] encArg: runtime: O(n^2) [5*z + 2*z^2], size: O(n^1) [1 + z] encode_not: runtime: O(n^2) [10 + 23*z + 10*z^2], size: O(n^1) [3 + z] encode_and: runtime: O(n^2) [1 + 5*z + 2*z^2 + 5*z' + 2*z'^2], size: O(n^1) [1 + z] encode_implies: runtime: O(n^2) [7 + 7*z + 2*z^2 + 5*z' + 2*z'^2], size: O(n^1) [3 + z + z'] ---------------------------------------- (71) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (72) BOUNDS(1, n^2) ---------------------------------------- (73) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (74) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(x, false) -> false and(x, not(false)) -> x not(not(x)) -> x implies(false, y) -> not(false) implies(x, false) -> not(x) implies(not(x), not(y)) -> implies(y, and(x, y)) The (relative) TRS S consists of the following rules: encArg(false) -> false encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_implies(x_1, x_2)) -> implies(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_false -> false encode_not(x_1) -> not(encArg(x_1)) encode_implies(x_1, x_2) -> implies(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (75) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (76) Obligation: Innermost TRS: Rules: and(x, false) -> false and(x, not(false)) -> x not(not(x)) -> x implies(false, y) -> not(false) implies(x, false) -> not(x) implies(not(x), not(y)) -> implies(y, and(x, y)) encArg(false) -> false encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_implies(x_1, x_2)) -> implies(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_false -> false encode_not(x_1) -> not(encArg(x_1)) encode_implies(x_1, x_2) -> implies(encArg(x_1), encArg(x_2)) Types: and :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies false :: false:cons_and:cons_not:cons_implies not :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies implies :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies encArg :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies cons_and :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies cons_not :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies cons_implies :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies encode_and :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies encode_false :: false:cons_and:cons_not:cons_implies encode_not :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies encode_implies :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies hole_false:cons_and:cons_not:cons_implies1_0 :: false:cons_and:cons_not:cons_implies gen_false:cons_and:cons_not:cons_implies2_0 :: Nat -> false:cons_and:cons_not:cons_implies ---------------------------------------- (77) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: implies, encArg They will be analysed ascendingly in the following order: implies < encArg ---------------------------------------- (78) Obligation: Innermost TRS: Rules: and(x, false) -> false and(x, not(false)) -> x not(not(x)) -> x implies(false, y) -> not(false) implies(x, false) -> not(x) implies(not(x), not(y)) -> implies(y, and(x, y)) encArg(false) -> false encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_implies(x_1, x_2)) -> implies(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_false -> false encode_not(x_1) -> not(encArg(x_1)) encode_implies(x_1, x_2) -> implies(encArg(x_1), encArg(x_2)) Types: and :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies false :: false:cons_and:cons_not:cons_implies not :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies implies :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies encArg :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies cons_and :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies cons_not :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies cons_implies :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies encode_and :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies encode_false :: false:cons_and:cons_not:cons_implies encode_not :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies encode_implies :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies hole_false:cons_and:cons_not:cons_implies1_0 :: false:cons_and:cons_not:cons_implies gen_false:cons_and:cons_not:cons_implies2_0 :: Nat -> false:cons_and:cons_not:cons_implies Generator Equations: gen_false:cons_and:cons_not:cons_implies2_0(0) <=> false gen_false:cons_and:cons_not:cons_implies2_0(+(x, 1)) <=> cons_and(false, gen_false:cons_and:cons_not:cons_implies2_0(x)) The following defined symbols remain to be analysed: implies, encArg They will be analysed ascendingly in the following order: implies < encArg ---------------------------------------- (79) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_false:cons_and:cons_not:cons_implies2_0(n17_0)) -> gen_false:cons_and:cons_not:cons_implies2_0(0), rt in Omega(n17_0) Induction Base: encArg(gen_false:cons_and:cons_not:cons_implies2_0(0)) ->_R^Omega(0) false Induction Step: encArg(gen_false:cons_and:cons_not:cons_implies2_0(+(n17_0, 1))) ->_R^Omega(0) and(encArg(false), encArg(gen_false:cons_and:cons_not:cons_implies2_0(n17_0))) ->_R^Omega(0) and(false, encArg(gen_false:cons_and:cons_not:cons_implies2_0(n17_0))) ->_IH and(false, gen_false:cons_and:cons_not:cons_implies2_0(0)) ->_R^Omega(1) false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (80) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: and(x, false) -> false and(x, not(false)) -> x not(not(x)) -> x implies(false, y) -> not(false) implies(x, false) -> not(x) implies(not(x), not(y)) -> implies(y, and(x, y)) encArg(false) -> false encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_implies(x_1, x_2)) -> implies(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_false -> false encode_not(x_1) -> not(encArg(x_1)) encode_implies(x_1, x_2) -> implies(encArg(x_1), encArg(x_2)) Types: and :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies false :: false:cons_and:cons_not:cons_implies not :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies implies :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies encArg :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies cons_and :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies cons_not :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies cons_implies :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies encode_and :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies encode_false :: false:cons_and:cons_not:cons_implies encode_not :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies encode_implies :: false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies -> false:cons_and:cons_not:cons_implies hole_false:cons_and:cons_not:cons_implies1_0 :: false:cons_and:cons_not:cons_implies gen_false:cons_and:cons_not:cons_implies2_0 :: Nat -> false:cons_and:cons_not:cons_implies Generator Equations: gen_false:cons_and:cons_not:cons_implies2_0(0) <=> false gen_false:cons_and:cons_not:cons_implies2_0(+(x, 1)) <=> cons_and(false, gen_false:cons_and:cons_not:cons_implies2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (81) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (82) BOUNDS(n^1, INF)