/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 36 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a) -> f(b) g(b) -> g(a) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_g(x_1) -> g(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a) -> f(b) g(b) -> g(a) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a) -> f(b) g(b) -> g(a) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a) -> f(b) g(b) -> g(a) encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_g(x_1) -> g(encArg(x_1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 2. The certificate found is represented by the following graph. "[5, 6, 7, 8, 9, 10, 11] {(5,6,[f_1|0, g_1|0, encArg_1|0, encode_f_1|0, encode_a|0, encode_b|0, encode_g_1|0, a|1, b|1]), (5,7,[f_1|1]), (5,8,[g_1|1]), (5,9,[f_1|1, g_1|1]), (5,10,[f_1|2]), (5,11,[g_1|2]), (6,6,[a|0, b|0, cons_f_1|0, cons_g_1|0]), (7,6,[b|1]), (8,6,[a|1]), (9,6,[encArg_1|1, a|1, b|1]), (9,9,[f_1|1, g_1|1]), (9,10,[f_1|2]), (9,11,[g_1|2]), (10,6,[b|2]), (11,6,[a|2])}" ---------------------------------------- (8) BOUNDS(1, n^1)